Monaghan Fen Survey 2007

Volume I: Main Report

Report for Monaghan County Council & The National Parks and Wildlife Service, Department of the Environment, Heritage and Local Government, Ireland

Prepared by: Dr Peter Foss & Patrick Crushell

October 2007

An Action of the Monaghan Heritage Plan 2006-2010

Monaghan County Council

National Parks Wildlife Servic

Monaghan Fen Survey 2007

Volume I: Main Report

Report for the Monaghan County Council & National Parks and Wildlife Service, Department of the Environment, Heritage and Local Government, Ireland

An Action of the Monaghan Heritage Plan 2006-2010

Prepared by:

Dr Peter Foss Project Leader, Plant Ecologist, Botanist and Wetland Conservationist & Patrick Crushell Environmental Consultant & Survey Specialist

> 33 Bancroft Park Tallaght Dublin 24 e-mail: peter.foss@freenet.de

> > October 2007

Authors: Foss, P.J. & Crushell, P. 2007 Title: Monaghan Fen Survey 2007. Report for the Monaghan County Council & National Parks and Wildlife Service, Department of the Environment, Heritage and Local Government, Ireland. Volumes 1-3.

An Action of the Monaghan Heritage Plan 2006-2010

Copyright Monaghan County Council & National Parks and Wildlife Service 2007

Authors:	Dr Peter Foss
	33 Bancroft Park
	Tallaght
	Dublin 24

Patrick Crushell Bell Height Kenmare Co Kerry

e-mail: peter.foss@freenet.de

patrick@crushell.com

All rights reserved. No Part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical photocopying, recording or otherwise without the prior permission of the National Parks and Wildlife Service.

Views reflected in this report do not necessarily reflect the views of Monaghan County Council or the Minister for the Environment, Heritage and Local Government.

Images of Monaghan Fens - Photographic Plate Credits

All photographs copyright property of Peter Foss 2007 unless otherwise stated.

Report cover images:

Left: – Quaking transition mire with Many-headed Bog Cotton (*Eriophorum angustifolium*) at Crumlin Lough.

Top: – Transition mire with Cuckoo Flower (*Cardamine pratensis*) and Common Sorrel (*Rumex acetosa*) at Morgan's Lough.

Bottom: – Quaking transition mire dominated by Lesser tussock sedge (*Carex diandra*) at Killyneill Fen.

Start of Executive Summary – Fen Views: 1 – Transition mire with Cuckoo flowers (*Cardamine pratensis*) at Lisnalee; 2 – Lake edge fringing reed and marsh community at Mullaglassan Lough, with a wooded crannóg in the centre of the lake; 3 – Transition mire area in the foreground and the infilling mill pond lake at Aghnamullen; 4 – Regenerating fen community on the cutover bog at Drumgallan Bog; 5 – *Carex rostrata* quaking mire on the edge of a small lake (Lough Aportan) at Eshbrack; 6 – Quaking poor fen community rich in *Sphagnum* species and Bog Sedge (*Carex limosa*) in the inter drumlin hollow at Lisarilly Bog NHA; 7 – Lesser tussock sedge (*Carex diandra*) quaking fen on the shores of a small lake at Lough Smiley NHA; 8 – The Alder woodland and reed fringe around the shores of Killyvilly Lough NHA.

Start of Introduction to the Monaghan Fen Survey - Flora of Fens: 1 – Delicate feathered flower head of Bog Bean (*Menyanthes trifoliata*) on Cornaglare Lough; 2 – Water Mint (*Mentha aquatica*) and Water St Johns Worth (*Hypericum elodes*) on quaking transition mire on the shore of Cornaglare Lough; 3 – Cowbane (*Cicuta virosa*) and Water Horsetail (*Equisetum fluviatile*) a plant combination seen on many fen sites in Monaghan; 4 – Seed heads of the Hairy Willow (*Salix aurita*) at Crinkill Lough; 5 - Wild Angelica (*Angelica sylvestris*) in flower at Kilroosky Lough Cluster; 6 – The Hairy Willow Herb (*Epilobium hirsutum*) at Dummy's Lough; 7 – The thick waxy flower of Yellow Water Lily (*Nuphar lutea*) at Crinkill Lough; 8 – Water pondweed (*Potamogeton polygonifolius*) in a ditch at Dunaree fen; 9 – Pink splendour of Ragged Robin (*Lychnis flos-cuculi*) in the fen and adjacent wet grassland at Killycooly Lough.

Start of Introduction to Irish Fens - Fen Mosses: 1 – *Hylocomium splendens* one of the hummock forming species in open wooded, poor fen area at Killyneill fen; 2 – Rich lichen growth on the trunk of a Willow tree at Sheetrim; 3 – *Aulacomnium palustre* a species found on poor fens,

here at Eshbrack; 4 – *Sphagnum squarrosum* on poor fen at Killyneill; 5 – *Plagiomnium* species on the transition mire at Killyneill fen; 6 – *Calliergonella cuspidata* on quaking transition mire at Lisinisky fen; 7 – *Marchantia polymorpha*, a thaloid liverwort in transition mire on Lisinisky fen; 8 – *Drepanocladus revolvens* forming a purple carpet on the fen at Summerhill Lough; 9 – *Sphagnum recurvum* in an area of regenerating poor fen on cutover bog at Cornaglare Lough.

Start of Materials & Methods - Fen Wildlife: 1 – A flock of immature Mallard (*Anas platyrhynchos*) at Crinkill Lough; 2 – The Variable Damselfly (*Coenagrion pulchellum*), one of the many species found on Monaghan fens; 3 – The Common Frog (*Rana temporaria*) found on every site during the Monaghan Fen Survey; 4 – Fen flowers, such as Wild Angelica provide a rich source of food to many insect species including Wasps; 5 – The Smooth Newt (*Lissotriton vulgaris*) one of the vertebrates of fens here at Lough Smiley NHA; 6 – One of the top insect carnivores, the Four-Spotted Chaser dragonfly (*Libellula quadrimaculata*) at Annagheane Lough; 7 – A Mayfly, one of the many insects seen on fens, here on Lisarilly Bog NHA; 8 – Water mint (*Mentha aquatica*) an important source of nectar to insects such as this Bumblebee; 9 – Caterpillar larvae feeding on Meadowsweet (*Filipendula ulmaria*) leaves at Lough Smiley NHA.

Start of Results - Grasses of Fens: 1 – Bottle sedge (*Carex rostrata*), one more common sedges found on fens in Monaghan; 2 – Star sedge (*Carex echinata*) found on the upland fens at Eshbrack; 3 – Reed Mace (*Typha latifolia*) found on the marginal areas of many fens and around small lakes at many sites; 4 – Lesser tussock sedge (*Carex diandra*) dominated fen at Killyneill. The midlands and north-east, including Monaghan are the headquarters for this fine leaved sedge; 5 – Bog Sedge (*Carex limosa*) a delicate sedge species found on poor fens among *Sphagnum* dominated moss carpets; 6 – Saw sedge (*Cladium mariscus*) forming large stand on lakeshores and in mineral rich alkaline fens; 7 - *Carex diandra* fen community with Cuckoo flower (*Cardamine pratensis*) one of the fen habitats for which Monaghan is a stronghold.

Start of Executive Conclusion - Value of Fens: 1 – When sensitively managed the recreational use of wetlands and their associated wildlife can both benefit (Drumsnat Lough); 2 – Fens can have a high scenic appeal, adding diversity to the countryside (Ramages Lough in the Kilroosky Lough Cluster); 3 – Flushed areas of wetland on Eshbrack have high scenic value and tourist appeal; 4 – Wetland protection and environmentally responsible farming can work well together to benefit both site interests (Mullaglassan Lough); 5 – The use of wetlands for fishing, with the development of appropriate visitor features, such as fishing stands, these generate income to local economies such as at the Kilroosky Bog Cluster; 6 – Lake and marginal reed beds at Drum Lough has benefited local community projects which promote the wildlife value of the area; 7 – Environmental information signs, like those at Cornaglare Lough can help raise awareness of the value and importance of wetlands and fens, though much more work needs be done in this area; 8 – Fen area on Crinkill Lough helps purify the water entering the lake, which is the local water supply for Doohamlet.

Fen Damage: 1 – Infill of fens with soil and building rubble occurred on half the sites surveyed during the Monaghan Fen Survey, here a section of the fen at Aghacloghan is being buried; 2 – Illegal dumping of household waste, here at Ardkirk, seriously degrades the environmental quality of many rural areas and endangers wildlife; 3 – Infill in the middle of fen at Coravilla-Rakeen leading to habitat fragmentation; 4 – An all too familiar road sign seen in Monaghan, here at Bocks Upper; 5 - Dumping on the road edge on Drumgallan Bog; 6 – Careless littering is a threat to wildlife, here at the Kilroosky Lough Cluster SAC; 7 – Hardcore infill causing damage to wetlands and habitat reduction at the edge of Sheetrim; 8 - Illegal dumping of garden and household waste, causing a significant threat to the fen habitats at Lough Smiley NHA.

Contents: Volume I - Main Report

	Page No.
Acknowledgements 1. Executive Summary	5 7
 2. Introduction to the Monaghan Fen Survey 2007 2.1 Background 2.2 The National Fen Survey 2.3 The Monaghan Fen Survey (MFS) 	11 11 11 12
 3. Introduction to Irish fens 3.1 What are wetlands and why are they important? 3.2 What is a Fen? 3.3 Fen types and their classification 3.4 Monaghan Fens in a National Context 3.5 Where might Fens occur today in County Monaghan? 	14 14 15 17 23 25
 4. Materials and Methods 4.1 Introduction 4.2 Identification of Sites 4.3 Background Site Research 4.4 Estimation of Wetland Area in County Monaghan 4.5 NPWS Fen Survey Database 4.6 Field Survey Relevé Card 4.7 Monaghan Fen Field Survey 4.8 Site Hydrochemistry 4.9 Fen Habitats & Vegetation Classification 4.10 Threats and Damage to Fens 4.11 Site Evaluation and Ranking 4.12 Completed Fen Survey Site Record 	27 27 28 29 31 31 32 32 33 34 34 34
 5. Results 5.1 General Survey Findings from the Monaghan Fen Survey 2007 5.2 Changes in Fen Habitats Confirmed by the MFS 5.3 Phytosociological Classification of Fens in County Monaghan 5.4 Extent of Fen Habitats in County Monaghan 5.5 Environmental Conditions of Fens in County Monaghan 5.6 Ranking of Sites and Conservation Recommendations 5.7 Cross Border Conservation Issues 5.8 Change in Conservation Value of Sites 5.9 Threats and Damage to Fens in County Monaghan 5.10 Potential Fen Sites requiring future survey in County Monaghan 5.11 Methodological Considerations for the forthcoming National Fen Survey 	40 40 45 50 51 57 61 67 67 71 74
6. Conclusions	77
7. Bibliography	80
8. Appendices3. List of Fens in County Monaghan Surveyed in detail on the MFS	84 85
 List of Sites in County Monaghan Surveyed in Brief on the MFS to assess their potential fen interest 	89
5. List of Sites Worthy of Survey supplied by Alan Hill, BSBI County Recorder for Monaghan to the MFS	91
 Phytosociological Relevé Classification and Twinspan Vegetation Data Analysis from the MFS 	92

	7. Fen Survey Relevé Card and Site Record Form	107
	8. Hydrochemistry Data from Water samples taken on sites during the MFS	111
	9. Conservation Evaluation of Sites Surveyed on the MFS	114
	10. List of sites where dumping and infill were noted as part of the MFS	116
	11. Cross Border Sites where Conservation Designations require harmonisation	117
	12. Additional Data Fields and Layouts included in the NPWS Fen Survey database	119
	13. Habitat Classification Schemes for Irish fens used on the MFS	131
	14. Habitat areas mapped on sites surveyed during the MFS	147
	15. Geological and Geophysical Maps of County Monaghan	149
9.	Glossary of Terms Used	152
10. Monaghan Fen Survey CD ROM Contents		

Contents: Volume II - Site Survey Reports

Appendices continued	1-274
 Monaghan Fen Survey 2007 Individual Site Reports, containing: Site Survey Report Six Inch Site map, Boundary data and location of Field Survey Notes Site Air Photograph Site Habitat Map 	

Contents: Volume III - Site Survey Photographic Reports

Appendices continued

1-279

2. Monaghan Fen Survey 2007 Site Photographic Record and Notes

Acknowledgements

This project was made possible through the generous financial support of The Heritage Council, Monaghan County Council and the National Parks and Wildlife Service, Department of the Environment, Heritage and Local Government.

The authors of this report would like to thank the following for their help and assistance during the compilation of sites to be surveyed during the Monaghan Fen Survey, provision of background information and comments on the final survey report.

To the land-owners for allowing access onto their lands during the course of the field survey.

Shirley Clerkin, Heritage Officer, Monaghan County Council for help during the survey period and for comments and suggestions on the final report.

Maeve Quinn and staff at Environmental Protection Agency, Monaghan for help during the collection and hydrochemical analysis of water samples taken during the survey.

Dr. Colmán Ó Críodáin, National Parks and Wildlife Service for invaluable discussions and comments throughout the period of the survey and preparation of this report.

Thanks also to Mr Tennyson and Dr Alan Hill, BSBI County Recorder for Monaghan for providing additional site recommendations.

Adrienne Burns, GIS Section, Monaghan County Council for assistance with provision of GIS survey data for the county.

Caitríona Douglas, Dr. Michael Wyse-Jackson and Dr. Neil Lockhart, National Parks and Wildlife Service for their assistance with providing background data on sites.

The authors especially wish to thank the following individuals for their assistance during the collection of data used in the preparation of this report: Michael Sheehy, Quaternary Section, Geological Survey of Ireland; Grainne McAviney, Monaghan County Council.

Finally thanks to Deaglán Ó Caoimh for editorial comments and proof reading selected sections of the final report.

A fen is a wetland system with a permanently high water level at or just below its surface, that receives nutrients via direct contact with mineral enriched surface or groundwater.

1. Executive Summary

- 1. To date no systematic national survey of fens has been undertaken in Ireland, in contrast to the situation for other habitat types including raised and blanket bogs, woodlands and turloughs.
- 2. The Monaghan Fen Survey 2007, the first in a series of County fen surveys, aims to address this information deficit, and proposed the following research objectives:
 - develop a methodology for the survey of fens at the county and national level;
 - describe in detail a selection of known and possible fen sites recognised as being of conservation value in County Monaghan, and locate additional sites within the constraints of the project;
 - describe and classify the key habitats and in particular fen vegetation types present on each site according to the scheme proposed in National Parks and Wildlife Service National Fen Study 2007;
 - ascertain the extent of the fen type(s) present and the overall site extent;
 - define the water chemistry parameters and peat depth on each site and relate these to the fen habitats recorded;
 - collect baseline hydrochemistry data to aid in developing management requirements of the different fen types that occur in Ireland;
 - identify the main threats and damage present on the sites, and propose management options;
 - rank the conservation importance of sites on a international/national scale and from a local biodiversity perspective;
 - finally the methodologies developed and employed during the Monaghan Fen Survey were to be assessed, and recommendations made on how best to apply these to the on-going National Fen Survey of Ireland.
- 3. The Monaghan Fen Survey report includes results of a detailed survey of 42 sites in County Monaghan, containing a total of 69 discrete survey compartments with a total site area of 1,919 ha (see Appendix 1 & 3).
- 4. On sites where fen communities were observed, the sites were described in detail, and the fen types present were recorded (via the collection of vegetation descriptions (relevés) from quadrats within each sites), these relevés were subsequently classified, and hydrochemical analysis of water samples collected from relevés was undertaken. The habitats present were mapped and their extent calculated, threats and damage were noted, management recommendations made and sites were ranked in terms of their conservation value.
- 5. This survey information was collated, digitised and stored within the National Parks and Wildlife Service (NPWS) Fen Survey Database. Additionally a completed paper based site report for each site was produced and lodged with the NPWS Research Section and Monaghan County Council.
- 6. In addition to the 42 sites surveyed in detail, a further 14 sites were assessed for their fen interest (see Appendix 4), which was found to be lacking. Summary results are presented for these sites.
- 7. The main results to emerge from the sites surveyed in detail as part of the Monaghan Fen Survey (MFS) 2007 are as follows:
 - Of the 42 sites surveyed, 25 were found to contain fen communities, the remainder contained other wetland habitats including marsh, reedbed and wet woodland;
 - On 11 sites the survey found that the fen habitats believed to be present, differed from those actually recorded;
 - Transition Mire 7140 (PF3) is the most frequently occurring fen habitat type in Monaghan, with a total fen habitat area of 77.2 ha;
 - The total area of fen recorded on sites during the MFS was 95.6 ha, considerably less than that predicted by earlier studies;

- Four main fen types were recognised in Monaghan, namely Poor fen PF2, Transition Mire 7140 PF3, Cladium fen 7210 PF1 and Alkaline fen 7230 PF1;
- Petrifying Spring 7220 FP1, which was believed to occur at one site in the County was not in fact recorded, and this habitat may not in fact occur within the County;
- Of the 42 sites surveyed, 3 sites were deemed to be of International Conservation Value; 16 of National Conservation Value and 8 of County Conservation Value; with a further 10 being of Local Biodiversity Value (High and Moderate local value);
- Future conservation of these sites will require appropriate designation, listing and planning control by the NPWS and Monaghan County Council;
- Five of the sites surveyed cross the international border with Northern Ireland. Discrepancies in conservation designations occur at each of these sites which may hinder the long term conservation of these areas. These issues should be addressed by National Parks and Wildlife Service (ROI) and the Environment and Heritage Service (NI);
- Three sites surveyed during the current MFS, which had an existing conservation designation prior to the survey, were found to have been seriously affected by drainage activities, resulting in habitat deterioration and loss of most if not all of their conservation value;
- All of the fens surveyed during the MFS were found to have been negatively affected by some degree of damage or modification from their natural state. The most significant damage observed was from drainage of wetlands, posible water pollution and infilling associated with land reclamatation. These issues will need to be addressed to prevent further degradation and subsequent loss of habitat and conservation value;
- Due to the abundance of wetland sites in County Monaghan it was not possible in the context of the MFS to survey all sites within the County. From an analysis of the distribution of wetland units within the county and the current habitats occurring there, it is likely that further fen areas still exist within the county that require survey.
- 8. 149 plant species (higher plants, mosses and liverworts) were recorded on sites during the Monaghan Fen Survey;
- 9. Classification of vegetation relevés showed that five main vegetation types were recorded and will provide further understanding of the vegetation of the different fen types that occur in Ireland. The data collected should prove useful for future studies into the phytosociology of fens in Ireland.
- 10. Hydrochemical analysis of water samples confirmed a clear gradient from base-poor acid conditions prevalent at Poor fen sites to intermediate neutral conditions of Transition mires to base rich alkaline conditions prevalent at the Alkaline Fen and *Cladium* Fen sites. The hydrochemistry data collected provides good baseline data for these fen habitat types.
- 11. Although the main plant nutrients Phosphorus and Nitrogen were analysed, the concentration of these nutrients was not found to be directly related to differences in vegetation types.
- 12. To ensure the long term protection of conservation worthy sites identified by the MFS, with an International, National or County Conservation Value, these sites must be listed in the County Development Plan and in Local Area Plans where appropriate.
- 13. On sites that are earmarked for conservation, strict planning controls must be enforced by the County Council.
- 14. As many of the sites identified, both those with an existing conservation designation and those being proposed for conservation, are in private ownership, their conservation will depend on voluntary co-operation with landowners and various stakeholders. The County Council should foster a wider understanding among these parties.
- 15. To foster a more positive attitude to the conservation value of wetlands and fen areas in particular, an enhanced public information programme might be considered by the County

Council which should include interpretation at the most important and accessible sites identified.

- 16. A methodology for the detailed survey of fen sites has been developed and piloted during the MFS. This survey scheme allows the creation of a full digital record of the sites surveyed. This includes site maps, habitat maps, photographic site record, and a digital description and account of the site and habitat particulars, together with phytosociological and hydrochemical data on the fen communities present.
- 17. Survey limitations encountered during the current survey that should be addressed prior to further surveys being carried out include:
 - difficulties accessing old non-digitised records of previous ecological surveys of the county. Information sources should be collated and digitised, where possible within NPWS and other relevant organisations;
 - due to resource constraints it was not possible to carry out an extensive remote sensing exercise to identify all possible fen habitat within the county.
- 18. Recommendations for the on-going National Fen Survey. These include:
 - more detailed GIS examination of air photography to shortlist possible fen sites should be undertaken, possibly at national level;
 - every effort made to contact local specialists and stakeholders seeking site information;
 - the development of a Phase I Fen Survey system to identify fen sites and exclude those sites with other related wetland habitats including marsh; wet woodland; and reed bed communities, prior to full fen survey;
 - preparation of methods manuals should be undertaken so that future surveys can follow a standard methodology, we propose both a:
 - Phase I survey manual to follow when carrying out the initial county wetland survey to identify potential fen sites within a county
 - Phase II manual for the detailed survey of fen sites, as outlined in this report
 - training programme for surveyors should be introduced at start of survey project to ensure consistency and standardisation of methods;
 - each survey team should comprise at least two individuals;
 - should an extensive programme of survey be introduced, it would be advisable to appoint a co-ordinator who would be responsible for on-going quality control of county surveys;
 - consideration be given to an invertebrate survey of a selection of fen sites to give greater understanding of the species diversity of fens in Ireland, as has been done in parts of Northern Ireland;
 - a habitat action plan for each fen type should be drawn up.

Flora of Fens

Fens contain a rich selection of flowering plants which add a rich tapestry of colour to this wetland habitat.

2. Introduction to the Monaghan Fen Survey 2007

2.1 Background

The present survey of fens in county Monaghan was commissioned by Monaghan County Council and the National Parks and Wildlife Service (NPWS) of the Department of the Environment, Heritage and Local Government. The survey is an Action of the Monaghan Heritage Plan 2006-2010.

There were two principal reasons for undertaking the survey in 2007, namely to devise a fen survey methodology which could be applied to a National Fen Survey of the entire country, to be undertaken by the NPWS, and the second was to obtain data on existing and newly proposed fen sites reported in 2006 in County Monaghan to the NPWS Fen Study Project (Foss 2007).

2.2 The National Fen Survey

To date no detailed field survey focusing exclusively on fens to identify those of conservation value has been undertaken in Ireland. Any information on fens of conservation value that has been recorded in other surveys has often been coincidental.

This lack of a national field based fen survey and the difficulties caused by the lack of accurate data on sites has been highlighted in the most recent NPWS Fen Study Project (Foss 2007), Irish Peatland Conservation Council (IPCC) Bogs & Fens of Ireland Conservation Plan (Foss, O'Connell & Crushell 2001), Crushell (2000, 2002), Doyle & O Críodáin (2003), and Dwyer (2000) inter alia.

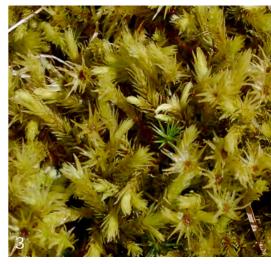
This lack of a national fen survey is in contrast to extensive NPWS surveys which have been conducted on the two other peatland types in Ireland, namely raised bogs and blanket bogs (Cross 1990; Douglas et al. 1984, 1985, 1986, 1987, 1989a, 1989b, 1989c, 1990; Foss & McGee 1987; Mooney 1991; O'Connell & Mooney 1983; inter alia).

The absence of a national fen survey has presented difficulties in the past in ensuring that a representative sample of the most important fen sites are given adequate conservation designation and protection within the Natural Heritage Area (NHA) and Natura 2000 Special Areas of Conservation (SAC) networks (Dwyer 2000; Crushell 2002; Foss et al. 2001).

Furthermore, variability and reliability of known fen data, in terms of recency and quality of data varies considerably among sites, making it difficult to compare sites across the country when trying to compile an inventory of the most important fens of a particular type and those that should be prioritised for conservation.

As Ireland has an obligation to report and provide updates on its conservation actions on sites within the Natura 2000 network, this survey of fens in Monaghan and future fen surveys aim to provide information to the Natura 2000 reporting process for the four Annex 1 fen habitats occurring in Ireland.

The present survey is the first stage in the implementation of a national fen survey which is to be undertaken by the NPWS over the coming years. It is envisaged that the methodology developed during the survey of fen sites in County Monaghan will be applied to the national survey of sites proposed by the NPWS.


2.3 The Monaghan Fen Survey

The Monaghan Fen Survey 2007 addressed the following research objectives:

- to describe the vegetation of each site with particular emphasis on the fen communities that are present;
- identify and classify the key fen habitat and vegetation types present on each site according to the scheme proposed in Foss (2007) (see Appendix 13), and in this report;
- ascertain the extent of the fen type(s) present and the overall site extent, and map these fen habitats together with the other main habitats identified;
- investigate the water chemistry parameters of each site and relate it to the fen communities that occur;
- measure peat depth associated with the fen types recorded;
- identify the main threats and damage present on the sites, and propose management options;
- to estimate the extent of fen habitat throughout the county and assess the conservation significance of the resource;
- rank the conservation importance of sites on an international/national scale (NHA and SAC) and from a local biodiversity perspective, and recommend sites for conservation designation.

Fen Mosses

These small plants provide proof of wetland health and add a rich tapestry of colour to the wet surface of fens.

3. Introduction to Irish Fens

3.1 What are wetlands and why are they important?

The Ramsar Convention on Wetlands of International Importance (to which Ireland is a signatory) defined wetlands in the broadest sense, of which fens are a particular type, as "wetlands are areas of marsh, fen, peatland or water, whether natural or artificial, permanent or temporary, with water that is static or flowing, fresh, brackish or salt, including areas of marine water the depth of which at low tide does not exceed six metres."

Wetlands have many important roles including water supply, flood storage, pollution control, groundwater recharge, habitats for a wide range of plants and animals, a major resource for fisheries, water sports and recreation, cultural and tourism value and aesthetic areas of great beauty. These benefits, often referred to as wetland functions and values, usually play a vital (and sometimes under-valued) role in recreation, tourism, and the economy.

Ireland is particularly rich in wetlands, due to a combination of climate, geology, local topography and soil types. Of the mean annual rainfall of 1,150 mm per year, only approximately 38% is lost to evaporation and transpiration. The remaining 62% of rainfall constitutes the annual average surface run-off supplying streams, rivers, lakes, wetlands and ground water fed aquifers in Ireland (Reynolds 1996).

County Monaghan has an average annual rainfall of between 800 and 1,199 mm, and this when taken together with the drumlin topography over much of the county, soil type and geology dictate that many small areas of water collection occur throughout the county. The wetlands that develop in these areas are often small by nature and for this reason many have been overlooked as valuable conservation areas in the past.

3.2 What is a Fen?

A fen is a wetland system with a permanently high water level at or just below its surface, that receives nutrients via direct contact with mineral enriched surface or groundwater. The vegetation is usually rich in or dominated by sedges (grass-like plants) and mosses. Organic matter is often accumulated as an alkaline or slightly acidic peat. Due to this peat – forming characteristic, fens are regarded as a distinct peatland type.

The source of water is what distinguishes fens from bogs, in fens the source of water is mineral enriched surface or groundwater whereas in the case of bogs the source of water is exclusively from the atmosphere in the form of rainwater. Features which distinguish fens from other peatland types in Ireland are presented in Table 3.1.

	1			
	Raised Bog	Blanket Bog	Fen	
Formed	Lake Basin	Sloping ground / mountain	Lake Basin / sloping ground	
Peat Depth	Up to 16m	Up to 6m	3 m	
Precipitation (/yr)	>800mm	>1200mm	800-900mm	
рН	<4	<4.5	>4.5	
Source of nutrients	Atmosphere / rain Atmosphere / rain		Ground-water / surface-water	
Vegetation	Heather, <i>Sphagnum</i> moss			
Distribution Ireland			Scarce but widespread distribution	

Table 3.1. Features which distinguish fens from other peatland types in Ireland

Two broad categories of fen types are recognised, poor fen and rich fen. A "poor" fen has very low concentrations of plant nutrients and floristically has similarities to a bog. A "rich" fen has relatively high concentrations of mineral nutrients, but is still characterised by the accumulation of peat (though this is likely to be primarily from the remains of plants other than *Sphagnum* mosses, most notably sedges and brown mosses).

Fens, are usually peat-forming wetlands that receive mineral nutrients (magnesium, iron and in particular calcium) from sources other than precipitation: usually from upslope sources through drainage from surrounding mineral soils and from groundwater movement, and are not generally so acidic as bogs.

In general they are poor in nitrogen and phosphorus, the latter of which tends to be the limiting nutrient in fen systems. Studies of wetlands in western Europe frequently show that nutrient enrichment (with nitrogen and phosphorus) leads to changes in species composition, decline in overall plant species diversity, and loss of rare and uncommon species (Doyle & O Críodáin 2003, Sheehy Skeffington & O'Connell 1998).

Some fens contain a rich selection of higher plants; up to and occasionally more than half Ireland's species of dragonflies, several thousand other insect species, as well as being an important habitat for a range of invertebrates and birds.

Fens, like wetlands in general, provide important benefits in a watershed, including preventing or reducing the risk of floods, improving water quality, and providing habitats for unique plant and animal communities.

Fens often occur in mosaics with other wetland communities such as reed beds, bogs or open water in which case they may be of relatively limited extent. Although fens can be found as discrete habitats in their own right, they may also occur in association with (or within) a range of other habitats including blanket bog, raised bog, turlough, dune slack, machair, wet heathland, wet grassland, woodland, karst areas, lacustrine and riverine habitats and systems.

Due to their occurrence in such a wide range of ecosystems, and the dependence of fens on a continuous supply of water, natural or anthropogenic influences can greatly affect the maintenance, creation or loss of these dynamic wetland habitats.

Typically fens are an early successional stage in the natural formation of raised and in some cases blanket bogs, or occurred at the edges of such acid peatlands. As these acid peatland systems expanded, through the accumulation of peat and their spread across the landscape, marginal fens often experienced a natural decline in area (Rieley & Page 1990).

The abundance of fens on former acid bog areas may, however, also increase through the influence of man. On raised bogs, which have been extensively mined or cut away for fuel, and the surface layer of the "bog" has been reduced so that it is at or below the surrounding ground water level, conditions may be created that favour the development of secondary fens. In such cases, once peat extraction ceases, the vegetation that naturally regenerates will be a fen, rather than bog communities, influenced by ground water inputs. Secondary fens of this type are common in County Monaghan where there is a history of extensive peat extraction (Moloney 2006).

More recently, like most peatland types in Ireland, fens have also experienced a decline in area, mostly from human activities such as peat mining, draining for cropland, fuel extraction, and fertiliser pollution and eutrophication. Because of the large historical loss of this habitat type, the remaining fens are that much rarer, and it is crucial to protect a representative selection of the best examples of each (Foss et al. 2001, Crushell 2000).

Fens are important wetland systems, whose conservation value has been recognised by the EU Habitats Directive as Special Areas of Conservation (SACs); as Wetlands of International Importance under the Ramsar Convention; and as Special Protection Areas (SPAs) under the EU Birds Directive.

3.3 Fen types and their classification

Irish Fens have been classified using a number of different schemes based on a variety of key ecological factors including the peat type on which they occur, features and composition of their surface vegetation, hydrological conditions and their topographic location (Foss 2007).

A number of the most popular fen classification schemes used are reproduced in Appendix 13 (after Foss 2007), to demonstrate how the classification systems differ and relate to one another, and introduce the reader to the features and terms used in relation to the classification and description of Irish fens.

In summary, within the context of the Monaghan, and by extension the National Fen Survey, 6 fen categories are recognised, namely: Transition mires and quaking bogs; Alkaline fens; Calcareous fens with *Cladium mariscus;* Poor Fens; Petrifying springs with tufa formation and Non-Calcareous springs.

Table 3.1 lists the 6 main fen types recognised in Ireland and details in brief how these fen types relate to the other fen classification schemes (i.e. Phytosociological classification, EU Habitats Directive fen types; Fossitt classification scheme etc.). The table also lists key species which occur within each fen type and the main habitat areas in which they occur.

The classification scheme is based primarily on the floristics of vegetation types that correspond to these fen types, as well as certain key habitat features associated with these fen categories. These fen types are defined in more detail below.

This classification scheme also takes account of Irelands obligations under the EU Habitats Directive to protect key sites which have been identified for the Annex 1 habitats: 7140 Transition mires and quaking bogs; 7210 * Calcareous fens with *Cladium mariscus* and species of the *Caricion davallianae*; 7220 * Petrifying springs with tufa formation (*Cratoneurion*); 7230 Alkaline fens. Two of these habitats, marked by an *, are priority habitats for conservation under the Directive.

The classification scheme is based on previous classification schemes including those proposed by Ó Críodáin & Doyle 1994, Doyle & Ó Críodáin 2003, Ó Críodáin 1988, Rieley & Page 1990, Foss 2007, Fojt 1993, Fossitt 2000, Sheehy-Skeffington & O'Connell 1998 and White & Doyle 1982. This classification scheme for Irish fens is based on available data collected by these researchers, which in the absence of a national fen survey to date, may be somewhat incomplete and not have identified all the fen community types likely to occur throughout the country.

One of the aims of the Monaghan Fen Survey, was therefore to test this classification scheme during the survey period, and see if the scheme was applicable in the field and whether any other fen community types not previously identified could be defined.

Table 3.1 Main fen types recognised in Ireland as part of the National Fen Survey, and their relationship to other classification schemes, phytosociological classification, together with details of key species and habitat features.

NPWS Fen Survey Habitats Classification Scheme	EU Habitats Directive Habitat; CORINE Habitat; Fossitt Habitat Scheme	Phytosociological Classification	Key Species	Habitat Examples	Site Examples
Transition Mire	7140 Transition mires and quaking bogs; 545 Transition mires; PF3 Transition mire and quaking bog	Scheuchzerietalia palustris to Caricetalia nigrae to Caricetalia davallianae	Carex limosa, C. diandra, C. lasiocarpa, C. viridula, Eriophorum angustifolium, E. gracile, Agrostis stolonifera, Molinia caerulea, Menyanthes trifoliata, Potentilla palustris, Pedicularis palustris, Sphagnum spp., Calliergon spp., Scorpidium spp.	Quaking areas on blanket and raised bogs; bog laggs; secondary fen areas of cutover and cutaway bogs	Scragh Bog, Westmeath; Holdenstown Bog, Wicklow; Glenamoy bog complex, Mayo
Alkaline fen	7230 Alkaline fens; 542 Rich Fens Caricion davallianae & 5421 Black bog rush fens & 5422 Fens not Schoenus dominated; PF1 Rich fens and flushes	Caricetalia davallianae	Schoenus nigricans, Homalothecium nitens, Carex viridula, C. nigra, C. dioica, C. panicea, Juncus subnodulosus, Molinia caerulea, Hydrocotyle vulgaris, Ranunculus flammula, Mentha aquatica, Galium palustre, Parnassia palustris, Pinguicula vulgaris	Topogenous fens in valleys or depressions ; within transition mire and tall reed beds; calcium rich flush areas in blanket bogs; dune slack areas; wet hollows in machair	Pollardstown fen, Kildare
Cladium Fen	7210 *Calcareous fens with Cladium mariscus and species of the Caricion davallianae; 533 Fen Sedge Beds; 5331 Fen Cladium Beds; PF1 Rich fen and flush	Magnocaricion - Cladietum marisci to Caricetalia davallianae	<i>Cladium mariscus</i> and species of Alkaline fens (see above)	Fen beds of the emergent plant zones of lakes; Cladium stands in blanket bog flushes and fens	Pollardstown Fen, Kildare; East Burren complex, Clare

Table 3.1 (cont.) Main fen types recognised in Ireland as part of the National Fen Survey, and relationship to other classification schemes, phytosociological classification, together with details of key species and habitat features.

NPWS Fen Survey Habitats Classification Scheme	EU Habitats Directive Habitat; CORINE Habitat; Fossitt Habitat Scheme	Phytosociological Classification	Key Species	Habitat Examples	Site Examples
Poor Fen	Habitats Directive – NA; 544 Acidic fens; PF2 Poor fen and flush	Caricetalia nigrae	Hammarbya paludosa, Juncus effusus, Carex rostrata, C. nigra, C. curta, Sphagnum recurvum, S. teres, Calliergon stramineum	Poor fen flushes in blanket bog; soligenous depressions among grassland, cutover bogs and heath	Carrigower Bog, Wicklow; Liffey Head flush, Wicklow
Petrifying Spring with Tufa	7220 * Petrifying springs with tufa formation (Cratoneurion); 5412 Hard Water Springs Cratoneurion; FP1 Calcareous Springs	Cratoneurion	Saxifraga aizoides, Carex dioica, C. pulicaris, C. flacca, C. nigra, Pinguicula vulgaris, Equisetum palustre	Calcium rich spring areas in fens, woodland, sea cliffs, esker ridges, limestone areas, blanket bogs	Pollardstown fen, Kildare; Knocksink Wood, Wicklow; Bellacorick Iron Flush
Non- Calcareous Spring	Habitats Directive – NA; 541 Springs Montio- Cardaminetea & 5411 Soft Water springs Montio- Cardaminetea; FP2 Non- Calcareous Springs	Montio-Cardaminetea	Saxifraga hirculus, Sphagnum auriculatum, Calliergon sarmentosum, Polytrichum commune, Juncus bulbosus, Viola palustris, Ranunculus flammula, Hydrocotyle vulgaris	Cold springs, commonly dominated by bryophytes within blanket bog complexes, clay and rock cliffs poor in lime	Glenamoy Bog Complex, Mayo

Transition mires and quaking bogs

(Habitats Directive – 7140; Fossitt - PF3)

<u>Scheuchzerietalia palustris to Caricetalia nigrae to Caricetalia davallianae communities</u> Heterogenous fen type, characterised by a scraw of floating or quaking mire vegetation, with medium sized or small sedge communities with *Sphagnum* or brown mosses. Vegetation is rooted in a layer of light, floating fen peat which rises and falls with fluctuating water levels, preventing submergence of the above ground parts of the vegetation. Water pH range: 5.0-7.5

Fen vegetation corresponding to this fen category can be found in or association with:

Floating carpets or quaking mires in larger blanket bog systems

Floating carpets or quaking mires in raised bog systems

Secondary fen areas on cutover and cutaway bogs

Minerotrophic quaking fens outside of larger mire complexes

Small fens in the transition zone between water (lakes, ponds) and mineral soil

Examples of this fen type:

Lough Roe, Clara Bog, Offaly Scragh Bog, Westmeath Holdenstown Bog, Wicklow Killyneill Fen, Monaghan Fenor Bog, Waterford Meenaguse Scragh, Donegal

Alkaline fens

(Habitats Directive - 7230; Fossitt - PF1)

Caricetalia davallianae communities

Small sedge communities and brown mosses, with or without *Schoenus nigricans*, and possible patchy cover of *Phragmites australis*, *Cladium mariscus*, *Typha* spp. or *Carex paniculata*. Vegetation of mineral-rich fens and base-rich fens on calcareous, alkaline peats. Not forming a floating or quaking mire community. Water pH range: 4.6-8.5

Fen vegetation corresponding to this fen category can be found in or association with:

Fens outside of larger mire complexes With spring communities developing in depressions Within tall sedge and reedbed communities In association with Cladium fen sedge beds Small areas in dune slack systems In association with transition mires In wet grasslands On tufa cones Within machair Within turloughs

Examples of this fen type:

Pollardstown Fen, Kildare Buckroney-Brittas Dunes & Fen, Wicklow Scragh Bog, Westmeath Bunduff Lough & Machair, Sligo Askeaton Fen Complex, Limerick Bellacorick Bog Complex, Mayo East Burren Complex, Clare

Calcareous fens with Cladium mariscus

(Habitats Directive – *7210; Fossitt - PF1)

<u>Magnocaricion - Cladietum marisci to Caricetalia davallianae communities</u> Variety of fen types in which *Cladium mariscus* occurs in association with species rich alkaline to poor fen communities, but where *Cladium* is not mono-dominant in character. Water pH range: 4.6-8.5

Fen vegetation corresponding to this fen category can be found in or association with:

Cladium mariscus beds of the emergent-plant zones of lakes Cladium stands in blanket bog flushes Cladium stands on regenerating cutaway bog Contact areas within calcareous fens (7230) Contact areas within acid fens Contact areas with reed beds and tall sedge communities Extensive wet meadows

Examples of this fen type:

Pollardstown Fen, Kildare East Burren Complex, Clare Lough Lurgeen, Galway Connemara Bog Complex, Galway Askeaton Fen Complex, Limerick

Poor Fens

(Fossitt - PF2)

Caricetalia nigrae to Scheuchzerietalia palustris communities

Medium to small sedge communities with *Sphagnum* present and occasional brown mosses, and possible patchy cover of *Phragmites australis*. Vegetation of swamps, rheotrophic mires, some acid grasslands and drainage channels. Not forming a floating or quaking scraw mire community, usually on firmer peat or *Sphagnum* peat substrate. Water pH range: 3.1-7.5

Fen vegetation corresponding to this fen category can be found in or association with:

Poor fen flushes in blanket and raised bog systems

Soligenous mires on peat or peaty mineral soils in blanket bog Soligenous depressions among grassland Flushes in wet heath

Regenerating communities on cutover bog

Examples of this fen type:

Bellacorrick Bog Complex, Mayo Boleybrack Mountain, Leitrim Cloghernagore Bog and Glenveagh National Park, Donegal Connemara Bog Complex, Galway Ox Mountain Bogs, Sligo Wicklow Mountains National Park, Wicklow

Petrifying springs with tufa formation

(Habitats Directive – * 7220; Fossitt - FP1)

Cratoneurion communities

Spring head or seepage areas, fed by meso- to eutrophic water rich in lime, usually dominated by bryophytes in which small vascular plants root. On contact with the atmosphere the lime rich water in the spring often deposits a hard deposit of calcium carbonate known as "tufa".

Fen vegetation corresponding to this fen category can be found in or association with:

Forest environments Open countryside Heathlands Contact areas within calcareous fens (7230) Calcareous / Machair grasslands At base of esker ridges Karst / Limestone areas Seepage lines on lime rich, inland and sea cliffs

Examples of this fen type:

Pollardstown Fen, Kildare Knocksink Wood, Wicklow Benbulbin plateau, Lafargy Bog, Sligo Errisbeg, Galway Ballyman Glen, Wicklow

Non-Calcareous springs (Fossitt - FP2)

Montio - Cardaminetea communities

Spring head or seepage areas, fed by oligo- to mesotrophic water, poor in lime, usually dominated by bryophytes in which small vascular plants root.

Fen vegetation corresponding to this fen category can be found in or association with:

Vegetation of cold springs, commonly dominated by bryophytes Warm water springs Springs in blanket bog Seepage lines on sea cliffs and base of inland clay cliffs, poor in lime

Examples of this fen type: Bellacorick, Mayo

Further information on fen types recognised in Ireland and the different classification systems that have been used to define fens can be found in Appendix 13.

3.4 Monaghan fens in a National Context

Historical evidence from the Plantation period indicates that peatlands or bogs, and by extension fens, which are often associated with the margins of acid bog systems, were common in County Monaghan (Moloney 2006). On maps from this period, the surveyors of the 17th Century indicated many extensive stretches of bog occurring in Monaghan which were marked with the name "bog" or "bog common", though no reliable county estimates for the area of bog are available from this period. In addition some areas at the margins of bogs were marked as "moss and rushy pasture", areas which were used as summer grazing when the ground was drier (Moloney 2006). These areas are likely to have contained fen communities in some cases.

As Moloney reports during the 17th Century there was an extensive cover of bog in County Monaghan and a relatively sparse population, so inhabitants were well supplied with fuel peat, the main use to which bogs were put. In addition rent was only charged on "profitable land" which bog was not considered to be.

This situation did not change significantly until the late 18th century when there was a major reletting of estate lands and landowners re-assessed the income that could be generated from their estates. One of the changes that occurred at this time was that the extraction of peat was associated with the generation of income or at least a turf duty whereby tenants had to supply a quantity of free fuel to landlords or their agents.

In the early 19th Century, the population of Monaghan increased significantly and pressure on dwindling bogs allowed landlords to introduce a series of schemes to charge tenants a rent for bogs (Moloney 2006). By the 1840's with the population at its peak, income from bog rents played a significant part in some estate budgets.

The removal of peat by this growing population resulted in many worked out bogs, which when abandoned became ideal locations for the formation of secondary fen habitats.

Although the "Bog Commission" established by Government in 1809 might be expected to be the first source of data on bogs in County Monaghan, because upland bogs were excluded and only large extensive bog areas were surveyed, the bogs of Monaghan were not examined, and no report was ever produced for the county by this Commission.

It is not until recently, that the first major report was produced which included accurate figures for the extent of bogs and fens in the County. This was the 1979 Hammond report entitled the "Peatlands of Ireland" (which was accompanied the Peatland Map of Ireland).

The 1979 Hammond report and survey, which incorporated a range of data sources, published and unpublished, to compile information on the extent of fen peat soils in Ireland (National Soil Survey programme of An Foras Taluntais operated from 1968; Aerial Photograph series 1973/74 undertaken by the Geological Survey of Ireland; 1920 Geological Survey Peat Map; inter alia) represents the first major project to quantify the area of the different peat types, including fens, in Ireland on a county by county basis.

A major drawback of the Hammond study is that he defined and recorded only a man-modified fen category in his survey. In his word "Undisturbed fens are rare and can only be found in a few counties in Ireland. Owing to their small size their representation on the map is not possible, even their continued existence as natural entities is under threat from agriculture and urban pressures".

It would also appear from this report that only fens with a deep peat layer (greater than 30 cm) were included. Therefore the report of Hammond relates to only the most extensive fen areas generally found in association with larger raised bog areas.

It is therefore likely that the total area of fen in Ireland recognised in Hammond, some 92,510 ha is an under representation of the total extent of fens in Ireland at that time (Foss 2007).

This argument is further supported by the fact, that this first national assessment of fens listed no fen in County Monaghan, a situation which was subsequently found to be inaccurate by later studies.

The first group to attempt to compile a list of intact fens of conservation value in Ireland, as part of a larger examination of heritage sites was An Foras Forbartha (AFF) (Anonymous 1981).

Their survey commenced in 1968 when they started compilation of a National Heritage Inventory which included both man-made and natural structures, and finished in 1974. Initially the information collected was published in a series of reports on Areas of Scientific Interest (ASIs) in each county. This data was subsequently collated in a report published in 1981 titled "Areas of Scientific Interest in Ireland", which AFF hoped would act as a baseline for further studies.

Their report lists a total of 99 fen sites nationally with a total area of 24,472 ha in Ireland. This report lists a total of 5 fen sites with an area of 96 ha in County Monaghan. The first time the habitat with a specific area was scientifically recognised as occurring in the county.

The work of the Irish Peatland Conservation Council (formerly the National Peatland Conservation Committee) since 1982 has been instrumental in expanding and refining our knowledge of the list of fens of conservation value in Ireland. This non-governmental group has published a series of peatland action and conservation plans since the early 1980's which have consistently listed all known and recently discovered intact fen sites of conservation value in Ireland (Anonymous 1986; Anonymous 1989; Anonymous 1992; Foss & O'Connell 1996; Foss, O'Connell and Crushell 2001). These lists of sites were compiled from published information sources (e.g. An Foras Forbartha ASI report; NPWS NHA site lists; private sources and their own site surveys).

In addition in 1999 the IPCC undertook an Irish Fen Inventory Study (Crushell 2000), in the absence of any Government based national fen survey. The IPCC called on assistance of fen experts and contacts nationally to provide data on existing and as yet undesignated sites that might nevertheless have a conservation value.

In 2001 the IPCC's peatland conservation analysis (Foss, O'Connell and Crushell 2001) showed that the area of fen nationally amounted to 19,660 ha in a total of 367 sites. This group listed a total of 13 fen sites with an area of 214 ha in County Monaghan.

The results of the study also fed into the EU Habitats Directive Natura 2000 process undertaken jointly by the non-governmental organisations (Crushell 2002; Dwyer 2000) in Ireland to ensure that where key habitats were under represented in the national list a greater number of (fen) sites would be considered for designation as Special Areas of Conservation (SAC).

As part of the SAC designation process an internal NPWS report prepared by Ó Críodáin in 1995 estimated the national extent of fens in Ireland of some 20,500 ha, close to the IPCC's area figure. In 2003 Doyle & Ó Críodáin provided additional data from NPWS which indicated the number of sites proposed as candidate SAC's for fen habitats and the area of fen protected within these sites which amounted to 3,620 ha in total within 35 sites.

The most recent information available within NPWS (based on information published on the official NPWS web site in 2007) indicates that the number of sites proposed for designation as SAC under one of the four Annex 1 fen habitat types has increased from the 2003 figure of 35 sites to a 2006 figure of 92 sites.

Just one of these SAC sites the Kilroosky Lough Cluster (1786) occurs in County Monaghan.

Outside of this information on SAC's, the NPWS Natural Heritage Area (NHA) database, created to hold data on all nationally important sites, indicated that in 2006, 478 sites nationally were classified as containing Fens & Flushes vegetation. There is no indication how many occurred in County Monaghan.

The most recent evaluation of data held by NPWS on fens, was undertaken in 2006 as part of the NPWS Fen Study (Foss 2007). This report collated all information on known and possible fen sites nationally, the particular fen type present and area of each type on any given site. The study found that nationally there was an estimated 22,180 ha of fen in 681 discrete sites.

The NPWS Fen Study report indicated that there were an estimated 190 ha of fen in 30 sites in County Monaghan. The area figure of 190 ha was believed to be a minimum area for fen in the County. Five fen types were recognised as occurring in Monaghan including Cladium fen (PF1), Alkaline fen (PF1), Poor fen (PF2), Transition mire (PF3) and Tufa springs (FP1). Transition mire

was by far the most abundant fen type with an estimated 126 ha of this habitat recorded on 14 sites.

3.5 Where might fens occur today in County Monaghan?

Three main sources of data exist which provide information on where fens might occur in County Monaghan, which would be of value in undertaking a county survey of this habitat type.

The first, referred above is the NPWS Fen Study (Foss 2007) which provided relatively reliable information on the location of some 30 fen sites (or potential sites) with an area of 190 ha in the county.

In addition, with more than 253 areas of open water in the county (listed as areas of open water on the OS Discovery map series) with an area of 2,004 ha, and a further 2,267 cutover raised bog areas defined in the Teagasc subsoil map of the County (Meehan 2004), covering some 12,247 ha, County Monaghan has a rich wetland resource (Foss 2007). Many of these wetland or in particular the cutover bog areas which have not been drained, are potential locations for the occurrence of fens.

A further source of information on the location of fen sites within the County is that held by heritage, botanical and ecological experts who have first hand experience of these habitats within the county.

The Monaghan Fen Survey aimed to access these three information sources to obtain a more detailed understanding of the location of fen sites within County Monaghan and assess their ecological value.

Fen Wildlife

Fens occur in a mosaic of wetland areas which are an important habitat for many animals, birds and especially insect species.

4. Materials and Methods

4.1 Introduction

The Monaghan Fen Survey was undertaken over the period from the $1^{\rm st}$ May 2007 to the $30^{\rm th}$ October 2007.

Background research on sites, data collection and survey preparation (maps; survey folders etc.) was undertaken from the 1st May to the 21st May 2007 in the National Parks and Wildlife Service Research Headquarters, Dublin and in the offices of Monaghan County Council.

The survey of sites in Monaghan was undertaken from the 22nd May to the 17th June 2007. From the 18th June to the 30th July survey results including relevé data, water chemistry data, site descriptions, surveys notes, site evaluations and final survey maps with habitat areas mapped were collated and digitised in the National Parks and Wildlife Service Research Headquarters, Dublin. Data analysis was undertaken during late July and August. The report of the survey was prepared in September and submitted in final format in October 2007.

4.2 Identification of Sites

A number of existing data sources were used to compile the lists of sites, and gather relevant information on these, during the 2007 Monaghan Fen Survey. These data sources are listed below.

4.2.1 Sites recorded in the NPWS Fen Study Database 2007

At the outset of the project the National Parks and Wildlife Service (NPWS) Fen Study database (Foss 2007) contained a list of 30 sites (see Appendix 3) with known or possible fen interest in County Monaghan. This list was compiled during 2006, as part of a data collation exercise undertaken by NPWS to consolidate all known information on fens in Ireland. Some of these 30 sites were relatively large and contained a number of discrete lakes or areas where fen habitats might be likely to occur, bringing the actual number of survey compartments up to 51.

4.2.2 Additional Sites Reported by Experts

Following discussions with the Monaghan County Council Heritage Officer at the start of the project in May 2007 a further 2 sites were proposed for survey (Site codes MFS02, MFS03).

A list of fen sites of possible conservation value was also submitted by Dr Alan Hill, Botanical Society of Britain and Ireland (BSBI) Vice County recorder for Monaghan. The list contained 39 sites (see Appendix 5). Of these sites 6 were surveyed in detail (two of these sites being new additions to the Monaghan Fen Survey site list), and a further 5 were assessed for their fen interest during a brief site visit. The remaining sites on the list were not surveyed and may merit survey as part of any future survey of sites in County Monaghan.

4.2.3 Sites Identified from Air Photography

During the preparation of maps and air photographs to be used on Monaghan Fen Survey 2007, and during the actual survey of sites in Monaghan, a number of additional sites were recognised that were considered worthy of detailed examination for their fen interest.

A further four sites (site Codes MFS01, MFS04, MFS05, MFS06) were found to have a fen interest and surveyed in detail as part of the Monaghan Fen Survey.

In addition 14 further sites were assessed for their fen interest during a brief site visit (see Appendix 4), but did not have any significant fen areas present.

4.2.4 NPWS River Finn & Blackwater Drainage Report

During the early 1980's the NPWS undertook a detailed survey of lakes and wetlands in County Monaghan to assess the likely impacts of drainage works proposed for the River Finn and River Blackwater catchments by the then Office of Public Works (Douglas & Ryan 1981; Douglas *et al* 1983).

During the compilation of the list of sites to be surveyed in the Monaghan Fen Survey 2007 the site lists from the Finn and Blackwater catchment surveys were examined to determine whether additional sites might be included in the present survey. By cross referencing site information from the river surveys with NHA data for County Monaghan four potential fen sites worthy of survey were identified and added to the current survey list (see Appendix 3).

In total 42 sites were surveyed in detail for their potential fen interest during the Monaghan Fen Survey 2007, which contained a total of 69 discrete sub-site compartments requiring survey.

4.3 Background Site Research

Once the list of sites had been compiled a site folder was created for each site which included:

- Air photograph of each site with provisional survey boundary, which was overlaid with either a 100 or 200 meter square survey grid to aid in estimation of site boundaries on the field survey;
- Six inch map of each site with provisional survey boundary, overlaid with either a 100 or 200 meter square survey grid;
- Air photograph overlaid with six inch map and provisional survey boundary;
- Previous survey reports and site descriptions where these were available;
- NPWS Ecologists Survey reports or NPWS Ranger Reports from the NHA survey conducted in the mid 1990's, where these were available for sites;

In addition a number of Geographic Information System (GIS) data sets were used to compile background information on sites, including data on underlying solid geology, quaternary deposits and river catchment information as described below.

This GIS information, together with site particulars, descriptions and previous survey information, was entered in respect of each site for which data was available, onto a Site Record Form (see Appendix 7), prior to being entered into the NPWS Fen Survey Database (see below).

4.3.1 GIS Map Data

ArcView 8.1 GIS software package was used throughout the Monaghan Fen Survey 2007 for all mapping purposes. Digitised base-maps were supplied by Monaghan County Council which included a full series of colour aerial photographs produced by Ordnance Survey of Ireland, the OS 6 Inch series of maps and the discovery series 1:50,000 maps.

Shape files of survey boundaries for each site were created, in the case of existing designated sites, those boundaries as drawn by NPWS were used, but in the case of new sites, boundaries were drawn to include all semi-natural habitat adjoining the fen site. The extent of each site was calculated and recorded in the MFS site database. Maps and aerial photographs were produced for each site for use during the field survey.

Following site surveys, habitat maps were produced. For every site, fen habitat was mapped according to the fen type recorded. On those sites that were ranked as being of low ecological importance no further mapping was undertaken. For those sites that were deemed to be of high local importance and greater, all habitats were mapped using ArcMap 8.1. The habitats within each site have been classified according to *A Guide to Habitats in Ireland* (Fossitt 2000). The terminology used follows this guide and the alphanumeric codes are used where possible both on maps and in the text.

The colour coding for habitat mapping follows the Heritage Council Draft Guidelines (Anonymous 2002). A final habitat map (overlain on the 6 inch OS maps) of each site was produced for inclusion in the site file and the final report. The extent of fen types and habitat types associated with each site was calculated using ArcMap 8.1 and recorded in the MFS site database.

4.3.2 GIS Quaternary Deposit Data

A digital version of the sub-soil map of county Monaghan produced by Teagasc (Meehan 2004) was used in determining the quaternary geology of each site. The underlying subsoil of each site was entered into the MFS site database. This map was also used in a desktop survey of potential wetland areas within the county as described in section 4.4 below. A map showing the location of MFS sites overlaying the subsoil map is presented in Appendix 15B.

4.3.3 GIS Geological Data

The 1:100,000 bedrock geology map of county Monaghan (Geraghty et al. 1997) was used to determine underlying geology at each site. Data gathered through this exercise was entered into the MFS site database. A map showing the location of MFS sites overlaying the bedrock geology map is presented in Appendix 15A.

4.3.4 GIS River Catchment Data

A digital river catchment map produced by Ordnance Survey of Ireland was used to determine the river catchment of each MFS site. A map showing the location of MFS sites overlaying the river catchment map for Monaghan is presented in Appendix 15C.

4.4 Estimation of Wetland Area in County Monaghan

Subsequent to establishing the GIS database for use in the MFS and on analysing the underlying parent material of each fen site (Meehan 2004), it became clear that the majority of fens occur on cutover raised bog areas. It also became evident that due to the vast number of wetlands in the county, it was not feasible to carry out detailed field surveys of all potential fen areas in the county.

Due to time and resource constraints, it was not possible to carry out an aerial-photo survey of the entire county to determine the location of all possible fen sites. In an attempt to determine whether there may be additional sites and to quantify the potential area of fen habitat, and the number of sites remaining in the county a desk-top survey was carried out using aerial photography and subsoil data.

Four representative 5km square quadrats were selected within the county, the quadrats were representative of the variation in geology and were also selected to give a good geographical spread (northern, southern, eastern and western quadrat) as is illustrated in Figure 5.8 (see Chapter 5).

The aims of the desk-top survey were:

- To determine the number and extent in hectares of wetland habitats within each of the four 5 X 5 km quadrats.
- To estimate (based on the results of the four sample areas), the total area and number of wetland sites that occur within the county, which potentially contain fen habitat.
- To calculate the area of wetland habitat within the four sample areas that has been lost as a result of land improvement and drainage.

All cutover bog units within each quadrat were examined using colour aerial photographs and the present day habitat recorded. Analysis of this data was subsequently undertaken to see what proportion of sites still contain natural or semi-natural wetland habitats, and the results were extrapolated to estimate total county values (see Figure 4.1 below).

Figure 4.1: Methodology used in assessment of potential area / number of wetland areas in County Monaghan. Blue line outlines the 5km X 5km study area (eastern study area shown). The Individual polygons outlined in magenta show the original extent of cutover raised bog within the study area. The percentage wetland habitat now contained within each polygon was estimated and recorded.

4.5 NPWS Fen Survey Database

As part of the 2006 NPWS Fen Study (see Foss 2007) a database was created to hold a variety of information on the fen sites recorded during the course of this desktop study.

In summary the main NPWS Fen Study database held information on site provenance, site names, county, SAC and NHA codes, national grid reference, site conservation designations, habitat information on the specific fen vegetation type(s) present and the area of each (or an estimate where no accurate data was available), information on rare species of note, a summary of previous published reports holding information on the site, and a site evaluation section which ranked each site in terms of its conservation importance, area information, survey information, and survey priority (For a full list of data fields recorded in the NPWS Fen Study database see Appendix 5 in Foss 2007).

Two secondary relational databases (linked to one together by use of site record number and reference code number), held a list of reports and publications referring to fens within the database, and a publications / report site records database, made up the complete NPWS Fen Study database.

The database was created using the Filemaker Pro 8 database package which runs on both PC and Mac platforms.

As part of the Monaghan Fen Survey 2007 the NPWS Fen Study database was expanded and new or adjusted data fields were created to hold the additional information that would be obtained during the current field survey process. The database was renamed the NPWS Fen Survey Database. A series of new data input layouts and reporting layouts were created to hold and display this survey information. Following the current field survey, vegetation results, habitat extent data, site descriptions, field survey notes, hydrochemistry data *inter alia*, were entered in the NPWS Fen Survey database (Version 1.4).

The additional survey information fields added to the NPWS Fen Survey database are listed in Appendix 12. Appendix 1 shows the main reporting layout for a site which has been surveyed and the information which was recorded.

4.6 Field Survey Relevé Card

One of the main objectives of this survey was to record, by means of relevé data, the fen vegetation types occurring on the sites to be surveyed. A relevé is a list of all the plant and bryophyte species recorded within a given quadrat area, to which a percentage cover value is assigned within a series of cover classes. Cover values used, based on Braun-Blanquet scheme, were: +: a few individuals; 1: <5% cover; 2: 5-25% cover; 3: 26-50% cover; 4: 51-75% cover; 5: >75% cover.

To allow efficient collection of relevé species data information, together with related environmental, photographic, soil and hydro chemistry data a relevé field card was designed. A sample of this relevé card, with revisions following survey work, is shown in Appendix 7.

Species identification, where necessary, for vascular plants and bryophytes, were made using Webb, Scannell & Doogue (1996); Watson (1981); Smith (1980); Jermy et al (1982), while nomenclature for species follows that provided National Biodiversity Network Gateway website at <u>http://www.searchnbn.net</u>. Species abbreviations used on the relevé card (to maximise on available space) are given in full, in both Latin and English, in Appendix 6D.

4.7 Monaghan Fen Field Survey

For those sites surveyed in detail as part of the Monaghan Fen Survey the following survey procedure was adopted:

- Prior to the site visit any previous reports available from the site were consulted and potential fen areas were noted;
- On arrival at the site, the site was examined with binoculars and note was taken of areas that might contain fen communities, and access to site was selected;
- During the survey, note was taken of drainage features, damage and possible threats to the site. These were marked on the air photograph of the site;
- The site was walked and note was taken of the location of different community types within the site, which were mapped onto the air photograph of the site, and a general species list was compiled;
- Fen areas, where present, were examined and relevé site(s) were selected based on areas of homogenous vegetation, usually ranging in size from 1 to 4 meters square;
- At the relevé location peat depth was probed using a 2 meter steel rod, substrate type was described and the water table depth was recorded;
- Relevés were recorded (two per site) using a pre-printed field card (see above) and cover values were assigned, based on Braun-Blanquet cover value system;
- Where possible a 1 litre water sample was collected from within each relevé quadrat. Where this was not possible, a water sample was taken from an adjacent area, as close as possible to the relevé site;
- A digital photographic record of each site was made, to include the appearance of the site in general, areas with fen communities, boundary and drainage features and damage occurring on the site;
- Any species not identified in the field (in particular Bryophytes) were collected and subsequently identified in the laboratory.

For some of the sites proposed for survey, the initial binocular survey of site showed that no suitable areas occurred where fen communities might occur. Where this was the case, the site was described in brief, a photographic record was made and no further survey work was undertaken.

4.8 Site Hydrochemistry

Where possible, two 1 litre water samples were collected from each of the sites surveyed in detail during the Monaghan Fen Survey. Samples were taken at or as close as possible to relevé locations. In some situations, due to a low water-table, samples were taken from the nearest area of surface water.

Samples were collected in polyethylene bottles, labelled and were stored at 4°C until further analysis. pH of water samples was measured within 12 hours of collection and recorded in the MFS database. Samples were delivered to EPA regional inspectorate (NAB accredited laboratory) within 24 hours for detailed chemical analysis. Determination of metal concentrations was carried out by Inductively Coupled Plasma Mass Spectrometry (ICPMS) at the EPA Richview Laboratory, Dublin.

All chemical parameters measured are listed in Table 4.1 along with the methods used in determination.

Appendix 8 presents a table showing the limits of Quantification (LOQ), the maximum uncertainty of the analysis and the EPA laboratory method reference number (internal Monaghan Inspectorate document) for each parameter.

The hydro chemistry data is presented in tabular form in Appendix 8. Standard descriptive statistics were carried out to summarise the hydrochemistry data. The hydrochemistry data was used in an analysis to investigate the effects of environmental factors on vegetation composition (see section 5.5 below). The mean and range of each parameter within each fen type was calculated to show variation of environmental variables between different fen types in an attempt to establish the requirements of each fen type.

Data were tested for normality (Kolmogorov-Smirnov test (KS-test)) and equality of variance (Levene test) prior to further analysis. Our data did not always meet the assumptions of homogeneity of variance and normality. Since analysis of variance appears not to be greatly influenced if the assumptions of equality in variances or normal distribution are not met as long as sample size is similar (Heath 1995), we proceeded our analysis without transformations. To test whether differences in the mean value of variance) was carried out. Statistical software used for data analysis included SPSS for windows and Microsoft Excel.

Parameter	Laboratory	Method of Determination	
Electrical Conductivity	EPA, Monaghan	Electrometrically using a conductivity	
		meter	
рН	EPA, Monaghan	Electrometrically using a pH meter.	
Ammonia	EPA, Monaghan	Absorption spectrophotometry using a flow injection analyser - salicylate method.	
Ortho-phosphate	EPA, Monaghan	Absorption spectrophotometry using a flow injection analyser - scorbic/molybdate method.	
Total Oxidised Nitrogen	EPA, Monaghan	Absorption spectrophotometry using a flow injection analyser – cadmium reduction/sulphanilamide & NED.	
Total Phosphorus	EPA, Monaghan	By acid digestion and absorption spectrophotometry using a flow injection analyser – ascorbic/molybdate method.	
Alkalinity	EPA, Monaghan	Titration with sulphuric acid and methyl orange.	
Sulphate	EPA, Monaghan	Ion chromatography	
Metals (Calcium, Magnesium, Iron, Potassium, Sodium, Manganese, Copper, Zinc)	EPA, Richview, Dublin.	Inductively Coupled Plasma Mass Spectrometry (ICPMS)	

Table 4.1. Chemical parameters determined by the EPA, laboratory and methods used.

4.9 Fen Habitat & Vegetation Classification

During the Monaghan Fen Survey the fen classification scheme described in Chapter 3 of this report was used during the field survey to characterise the fen communities found on the sites visited. The field based classification of the fens visited was subsequently confirmed by reference to the relevé data that had been collected from sites. Where necessary, the site fen type was redefined following this phytosociological analysis.

Following input of the relevé data into a computer database, TWINSPAN (Two Way Indicator Species Analysis) analysis (Hill 1979) was carried out to assist in classifying the relevés into community types.

The Twinspan ordination of the relevé data, is presented in Appendix 6B. Subsequent to the computer classification of data a degree of manual manipulation of the relevé table was undertaken (relevé and species order) to produce the final relevé table (see Appendix 6A). A synoptic table of the classified relevé, showing constancy value and a summary range of relevé parameters is shown in Appendix 6C.

Classification of relevés was based on the phytosociological classification scheme for Irish fens defined by Ó Críodáin & Doyle 1994, and White & Doyle 1982, which is outlined in Chapter 3 of this report and in greater detail in Appendix 13.

Following the final classification of plant communities Detrended Correspondence Analysis (DCA) (Hill & Gauch 1980) was carried out to establish the effect of measured environmental factors in

relation to differences in vegetation types. The resulting ordination diagrams are useful in determining correlations between vegetation types and environmental variables such as water chemistry. TWINSPAN and DCA were both carried out using the computer programme PC-ORD 4.0 for Windows (McCune & Mefford 1997).

4.10 Threats and Damage to Fens

Wetlands, and fen areas in particular have historically been regarded as less productive than adjacent agricultural land and measures have been taken to improve their quality. The principal method of land improvement has usually involved some form of drainage. In addition, a more recent trend has been the use of small inter-drumlin fens as areas to dispose of rubbish and landfill materials.

During the survey past and existing damage to wetlands and threats to the future functioning of the wetland were noted.

4.11 Site Evaluation and Ranking

Determining the conservation value of sites was one of the primary aims of the Monaghan Fen Survey. To assess the potential value of site, sites were assessed on a range of criteria and scores were applied to these. Sites were then ranked according to conservation value of the overall sites, based on the ranking system described below.

4.10.1 Site Evaluation:

Following completion of the site survey each site surveyed in detail was evaluated in relation to 15 criteria. These criteria included Naturalness, Non-recreatability, Potential value, Typicality, Size, Habitat Diversity, Fen value, Rarity of species and habitats, Viability, Recorded History, Educational value, Management needs, Intrinsic appeal and Expert opinion. 13 of these criteria are based on those listed in the NPWS National ASI Survey, Guidelines for Ecologists (Lockhart et al. 1993), and were assessed according to the guidelines in that report, while Fen Value and Expert Opinion were added as part of the current conservation assessment of sites.

A brief definition of the criteria, their meaning in the context of this survey and the scoring system applied are provided here. For full details and discussion of the selection criteria see Lockhart et al. 1993.

Naturalness

An assessment of site damage and alteration, disturbance and human interference noted. Scoring: 0 = high degree of disturbance; 5 = no or minimal disturbance.

Non-recreatability Feasibility of re-creating a given site and/or habitat type. Scoring: 0 = easy to re-create; 5 = difficult to re-create.

Potential value

Whether site value can be improved in a reasonable timescale. Scoring: 0 = no improvement possible on site, or the site close to its maximum potential; 5 = significant improvement possible/ site not at its maximum potential

Typicality

Degree to which a site displays typical habitat features. Scoring: 0 = habitat not representative; 5 = excellent example of habitat.

Educational value

Site suitability for educational use. Scoring: 0 = no educational value; 5 = highly suitable as an educational site.

Size

Relative site size in relation to habitats present and at scale of habitats within County. Scoring: 0 =Site habitat area too small to be viable; 5 =site habitat size large and viable.

Diversity

Range of habitats and species within site. Scoring: 0 = poor habitat / species diversity; 5 = excellent habitat / species diversity.

Fen value

Quality of fen habitat(s) on the site. Scoring: 0 = no fen habitats present; 5 = good quality and quantity of fen habitat present.

Rarity of species

Rare or notable species present on site. Scoring: 0 = no species of note recorded; 5 = rare species of note confirmed on site.

Rarity of habitats

Rare or notable habitats present on site (in the context of the EU Habitats Directive). Scoring: 0 = no habitats of note recorded; 5 = rare habitat of note confirmed on site.

Viability

Whether interest of site will persist even with protection measures. Scoring: 0 = site unviable; 3 = viable but only with management measures; 5 = site viable in its current state.

Recorded History

Previous research information available on the site. Scoring: 0 = no previous information/research; 5 = extensive site information available.

Management needs

Degree to which management is required on site to adequately conserve the ecological interest. Scoring: 0 =Site requires major management / restoration initiatives; 5 =site requires little or no change in current management regime.

Intrinsic appeal

Scenic and landscape appeal of site. Scoring: 0 = no scenic/landscape appeal; 5 = high scenic/landscape appeal.

Expert opinion

Overall surveyors opinion of site value and conservation potential. Scoring: 0 = site has little value for conservation; 5 = site has high value for conservation

4.10.2 Site Ranking:

Site scores were totalled for each site, and ranked. Those sites with the highest score were ranked as being of highest importance. Following this, sites were assigned to one of six classes as described in Table 4.2 below. The six classes were created with reference to the National Roads Authority (Anonymous 2004) site evaluation scheme on an importance scale ranging from International -> national -> county -> local value. As most sites fit within the local scale of importance, this was further split into three classes: high local value -> moderate local value -> low local value. The criteria of each of the evaluation classes are presented in Table 4.3.

The results of the conservation evaluation are presented in Appendix 9.

Table 4.2. The conservation value score system and ranking scheme applied to sites on the Monaghan Fen Survey 2007.

Site Conservation Status	Score Value	Ranking Code
International Value	40-75	A
National Value	30-75	В
County value	25-29	C +
High local value	20-24	С
Moderate local value	11-19	D
Low local value	0-10	E

Site rating were based on the ecological and site evaluation criteria presented in Table 4.3 below.

Table 4.3. Site ranking criteria used on the Monaghan Fen Survey 2007 (modified fro	m
NRA (2004).	

Ranking	Qualifying Criteria
A	Internationally important Sites designated (or qualifying for designation) as SAC* or SPA* under the EU Habitats or Birds Directives.
	Undesignated sites containing good examples of Annex I <u>priority</u> habitats under the EU Habitats Directive. Major salmon river fisheries.
	Major salmonid (salmon, trout or char) lake fisheries.
В	Nationally important Sites or waters designated or proposed as an NHA* or statutory Nature Reserves. Undesignated sites containing good examples of Annex I habitats (under EU Habitats Directive). Undesignated sites containing <u>significant numbers</u> of resident or regularly occurring
	populations of Annex II species under the EU Habitats Directive or Annex I species under the EU Birds Directive or species protected under the Wildlife (Amendment) Act 2000. Major trout river fisheries.
	Water bodies with major amenity fishery value. Commercially important coarse fisheries.
C +	County value Sites containing semi-natural habitat types with high biodiversity in a county context and a high degree of naturalness, or significant populations of species which are rare in the county.
	Small water bodies with known salmonid populations or with good potential salmonid habitat.
	Sites containing resident or regularly occurring populations of Annex II species under the EU Habitats Directive or Annex I species under the EU Birds Directive.
	Large water bodies with some coarse fisheries value.
С	High value, locally important Sites containing semi-natural habitat types with high biodiversity in a local context and a high degree of naturalness, or significant populations of locally rare species.
	Small water bodies with known salmonid populations or with good potential salmonid habitat.
	Sites containing <u>any</u> resident or regularly occurring populations of Annex II species under the EU Habitats Directive or Annex I species under the EU Birds Directive.
	Large water bodies with some coarse fisheries value.
D	Moderate value, locally important Sites containing some semi-natural habitat or locally important for wildlife. Small water bodies with some coarse fisheries value or some potential salmonid habitat. Any water body with unpolluted water (Q-value rating 4-5).
E	Low value, locally important Sites containing some remnant semi-natural habitat or locally important for wildlife, but where disturbance has significantly altered habitat and/or continues to threaten future survival of the site.

*SAC = Special Area of Conservation SPA= Special Protection Area NHA= Natural Heritage Area

4.12 Completed Fen Survey Site Record

Following completion of the site survey, a site folder for each site surveyed was created containing the following documents and information (two replicates of each folder were made, one deposited with Monaghan County Council and the other with NPWS):

- Completed relevé cards
- Photographic record of survey with explanatory notes to photographs
- Site description output from the NPWS Fen Survey database which included all site particulars, site description, survey notes, water chemistry data, information on site threats and damage and site conservation evaluation *inter alia*
- Six inch map of the site with the location of site notes shown
- Colour air photograph of the site
- Previous site reports and survey information
- And where the site was proposed for NHA/SAC designation, a completed NPWS NHA site form

Grasses of Fens

Fens are characterised by a rich selection of grasses and sedges which make up the framework on which flowering plants, mosses and fen wildlife depends.

5. Results

5.1 General Survey Findings from the Monaghan Fen Survey 2007

A detailed habitat survey of 42 wetland sites was undertaken (containing a total of 69 sub-site compartments) in County Monaghan during the current field survey, together with a brief site evaluation of a further 14 sites which revealed no fen interest.

The location of sites surveyed in detail is shown in Figure 5.1, the location of the 14 sites evaluated in brief is shown in Figure 5.2, with site names, site code and grid reference. Site lists are presented in alphabetical order by site name in Table 5.1 and 5.2 respectively. Further details of these sites are presented in Appendix 3 & 4. Detailed individual site reports, for the sites surveyed in detail, are presented in Appendix 1 (see report Volume II).

The survey data collected from the detailed survey of each site, included all habitat types recorded, fen interest on the site, fen extent data, site description, field notes *inter alia*. This information was compiled in a Filemaker Pro 8 database. Version 1.4 of the NPWS Fen Survey Database, based on the subset of sites listed for County Monaghan, is included on the CD accompanying this report.

In addition to the data for each site held within the survey database a photographic record with notes was compiled for each site and in presented in Appendix 2 (see report Volume III). This information together with a site air photograph, six inch map with the location of field notes, and a detailed habitat map constituted a full site survey report in the context of this survey. The complete site survey reports (for the 42 sites surveyed in detail) are presented in Appendix 1 in Volume II of this report.

In addition to the site survey reports presented in this final project report, a detailed paper based site folder for each site surveyed in detail was created and is lodged with the NPWS Research Branch, Dublin and with Monaghan County Council. These site folders contain the same information as in the database site report with the addition of previous reports and survey data where this was available for a site, together with field notes taken during this survey, original relevé cards and where the site was proposed for NHA designation, a completed NPWS Natural Heritage Area (NHA) form.

5.2 Change in Fen Habitats Confirmed by the Monaghan Fen Survey

Based on the results of the NPWS Fen Study (Foss 2007), which compiled a list of all known sites in Ireland with a possible fen interest, together with fen types and area estimates on each site, a total of 30 fen sites were originally identified for survey in County Monaghan.

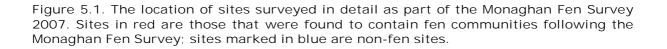
Based on available information, these 30 sites were believed to contain a range of fen habitats including Poor fen PF2, Transition Mire 7140 PF3, Cladium fen 7210 PF1, Alkaline fen 7230 PF1 and Petrifying Spring 7220 FP1, with a total estimated site area in the County of 190 ha. It should be noted, however, that for 10 of the original sites no fen area estimates were available prior to the survey, making the 190 ha of fen estimated in the County a minimum area estimate.

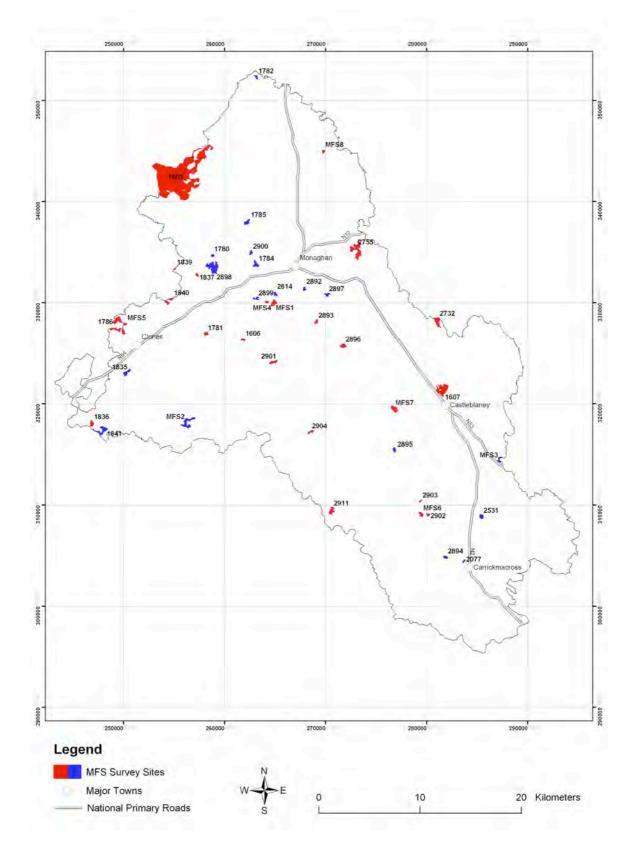
See Appendix 3 (table includes data based on Foss 2007) for further details of the fen type and area data on each of the 30 sites originally proposed for survey as part of the Monaghan Fen Survey. In addition to the 30 original fen sites proposed for survey, Appendix 3 also shows the sites added at a later stage to the Monaghan survey list, which were located during the mapping or actual survey work, which brought the total number of sites to 42. For these additional site only the actual fen habitat type recorded and actual extent data based on the results of the current survey are shown in Appendix 3.

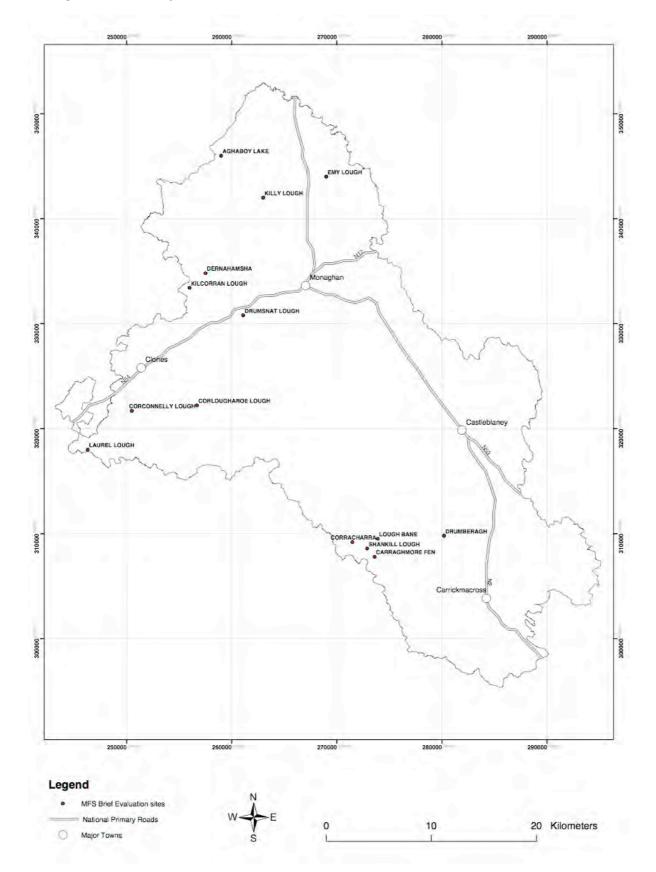
MFS Site Code	Site Name	Grid Reference
002900	AGHABOY TOWNLAND FEN	H 620 350
002902	AGHACLOGHAN	H 807 087
002904	AGHNAMULLEN	H 682 172
001780	ALLAGESH LOUGH NHA	H 590 346
001836	ANNAGHGHEANE LOUGH NHA	H 469 181
MFS-03	ARDKIRK FEN	H 872 144
MFS-06	BOCKS UPPER	H 794 091
002901	CORAVILLA - RAKEEN	H 660 245
MFS-01	CORNAGLARE & CRUMLIN LOUGH	H 648 300
MFS-07	CRINKILL LOUGH	H 767 195
MFS-04	CRUMLIN LOUGH	H 642 330
MFS-02	DRUM LOUGH	H 561 183
001841	DRUMCOR LOUGH NHA	H 472 171
002732	DRUMGALLAN BOG	H 813 283
002903	DUNAREE	H 795 105
001603	ESHBRACK BOG NHA	H 550 430
002898	GRAFFAGH AND CORINSHIGO	H 595 338
002897	GREAGHGLAS	H 705 307
MFS-08	KILLYCOOLY LOUGH	H 794 091
001782	KILLYHOMAN MARSH NHA	H 630 523
002755	KILLYNEILL FEN	H 730 354
001839	KILLYVILLY LOUGH NHA	H 551 334
002899	KILNACLAY FEN	H 635 305
001786	KILROOSKY LOUGH CLUSTER SAC	H 490 275
001835	LISABUCK LOUGH NHA	H 503 230
001781	LISARILLY BOG NHA	H 582 268
002911	LISINISKY MARSH	H 706 096
001840	LISLANNAN BOG NHA	H 549 303
002893	LISNALEE	H 689 277
002896	LISQUIGNY (CORLONGFORD) FEN	H 732 267
001607	LOUGH SMILEY NHA	H 82 21
MFS-05	MORGANS LOUGH	H 502 279
002531	MOYLAN LOUGH	H 855 085
001785	MULLAGHMORE LAKE (SOUTH) NHA	H 624 381
001837	MULLAGLASSAN LOUGH NHA	H 573 327
002077	NAFARTY FEN NHA	H 833 045
002614	PRIESTFIELD LOUGH	H 650 310
001606	RAFINNY LOUGH NHA	H 620 265
001784	ROSEFIELD LAKE AND WOODLAND NHA	H 633 337
002892	SHEETRIM	H 679 315
002894	TIRAGARVAN	H 815 045
002895	TOSSY CROSS	H 769 154

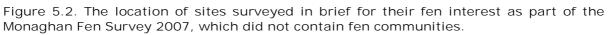
Table 5.1. The sites surveyed in detail as part of the Monaghan Fen Survey 2007.

Site Name	Grid Reference
AGHABOY LAKE	H 590 346
DRUMSNAT LOUGH	H 611 308
KILCORRAN LOUGH	H 560 334
DRUMBERAGH	H 802 098
SHANKILL LOUGH	H 729 086
LOUGH BANE	H 739 095
CORRACHARRA	H 715 092
LAUREL LOUGH	H 463 180
CORCONNELLY LOUGH	H 505 217
CARRAGHMORE FEN	H 736 078
CORLOUGHAROE LOUGH	H 567 222
EMY LOUGH	H 69 44
KILLY LOUGH	H 63 42
DERNAHAMSHA	H 575 348


Table 5.2. The sites evaluated in brief as part of the Monaghan Fen Survey 2007.


Following the Monaghan Fen Survey (MFS) the following survey findings emerged in relation to fen habitats recorded and the extent of these on the sites surveyed:


- On 12 of the original 30 sites proposed as possibly containing a fen habitat present, no fen interest was found on the sites following the present survey. While on 17 of the total 42 sites where fen habitats were believed to be present at the start of the project, survey results showed that there were no fen habitats on these sites;
- On 11 sites the survey found that the fen habitats believed to be present, differed from those actually recorded. In general this difference in fen type present related to confusion in the original classification of the site as Poor fen, which subsequently was found to be Transition mire;
- No Petrifying Spring 7220 habitat was found on any Monaghan fen site (originally one site was proposed for this fen type), indicating that this habitat may in fact not be present within the county;
- The accurately mapped and calculated area of fen in Monaghan, based on the current survey results, was found to be 95.6 ha, considerably less than the previous minimum estimate of 190 ha;
- Transition Mire 7140 (PF3) is the most frequently occurring fen habitat type in Monaghan, with a total fen habitat area of 77.2 ha. This represents 80 % of the known fen resource (95.6 ha) in County Monaghan.


Of the 30 original fen sites identified for survey in Monaghan, based on information from the NPWS Fen Study (Foss 2007), the results of the present survey show that 12 sites in fact had no fen interest following detailed survey.

These results may have potentially significant implications for the assessment of the extent and abundance of wetland sites throughout Ireland, which was made in the NPWS Fen Study Report (Foss 2007). If the results from Monaghan were to be repeated nationally, more than 40% of the sites believed to contain fen habitats might in fact be found to contain no significant fen areas. Such a decline in the list of sites with fens would make the remaining sites with fen habitat less widespread than previously thought and therefore increase the conservation importance of sites which do contain fen.

5.3 Phytosociological Classification of Fens in County Monaghan

A total of 54 relevés were collected during the course of the Monaghan Fen Survey from 26 of the 42 sites surveyed in detail. Relevés were only sampled on those sites with possible or clearly identifiable fen vegetation communities. These relevés were classified, during the field survey, according to the fen classification scheme outlined earlier in Chapter 3.

The completed relevés were then entered into an electronic spreadsheet to allow more detailed analysis and subsequent classification.

Initially a statistical analysis of the relevé data (using TWINSPAN) was undertaken (Hill 1979). The resulting output of the TWINSPAN analysis is presented in Appendix 6B. Five distinct relevé groups were identified by this ordination, which upon examination included an Alkaline fen, Cladium fen, Poor fen and two distinct Transition mire groups.

Following the statistical TWINSPAN analysis, the relevé and species data, was selectively manually re-ordered and the relevés were classified according to the phytosociological classification scheme for Irish fen outlined in Appendix 13. It should be noted that due to the small sample size of some of the communities identified during the MFS, and the lack of a completed national fen survey which would have identified all the significant fen vegetation types present in Ireland, the classification presented here is based on best available data (see Table 5.3 below). It is possible that future research and data collection may require alteration of the classification scheme presented here. The final classification of relevés from the MFS is presented in Appendix 6A.

The relevés recorded during the MFS were assigned to 4 fen phytosociological groups, namely Cladium fen (relevé table no. 1 to 3) which can be assigned to the order Caricetalia davallianae, Alkaline fen (relevé table no. 4 to 7) which can be assigned to the order Caricetalia davallianae, Transition mire (relevé table no. 8 to 40) which can be assigned to the order Scheuchzerietalia palustris to Caricetalia nigrae and Caricetalia davallianae and Poor fen (relevé table no. 41 to 52) which can be assigned to the order Caricetalia nigrae, as well as two relevés (no. 53 and 54) which were classified as marsh rather than fen vegetation.

A synoptic table of the resulting relevé classification, showing constancy values and a summary range of relevé parameters is shown in Appendix 6C.

These four phytosociological fen groups recognised during the MFS are described in further detail below.

5.3.1 Cladium fen (relevé table no. 1 to 3)

The community is characterised by the occurrence of a number of species indicative of the Caricion davallianae (rich fen) in the ground layer and by the presence of a low to moderate cover value for the Saw sedge, *Cladium mariscus*. Caricion davallianae species occurring in the relevés included in this group are: *Carex panicea, Carex viridula ssp. oedocarpa, Campylium stellatum, Carex pulicaris, Briza media, Cirsium palustre, Drepanocladus revolvens, Pedicularis palustris, Calliergonella cuspidata and Carex nigra.* Other species of note include *Molinia caerulea* and *Succisa pratensis*.

pH of water samples collected from these sites ranged from 8.03 to 8.07.

This fen community type is rare in Monaghan. The importance of sites with this community type is further enhanced by the fact that *Cladium* fen is a priority habitat for conservation under the EU Habitats Directive.

Cladium mariscus fen was recorded at two sites during the MFS survey, at Killyvilly Lough and in the Kilroosky Lough Cluster SAC at Kilroosky Lough and Summerhill Lough.

5.3.2 Alkaline fen (relevé table no. 4 to 7)

Four Alkaline fen relevés are presented in Table 6B (in addition to those relevés in the *Cladium* fen group mentioned above). These relevés include species indicative of the Caricion davallianae (rich

fen), including *Carex viridula ssp. oedocarpa, Campylium stellatum, Carex panicea, Drepanocladus revolvens, Ctenidium molluscum inter alia.*

pH of water samples collected from these sites ranged from 6.5 to 8.1.

This fen community type is rare in Monaghan, and was only recorded at two sites during the MFS survey, at Eshbrack Bog where the community occurred in a flushed valley basin, and in the Kilroosky Lough Cluster SAC where the community occurred on the shore of Kilroosky Lough, Dummys Lough and Summerhill Lough, all of which are oligotrophic, alkaline or hard water lakes.

5.3.3 Transition Mire (relevé table no. 8 to 40)

Table 6B reveals that Transition mire, was the most abundant fen type recorded during the course of the Monaghan Fen Survey, with 33 of the 54 relevés recorded in total, being assigned to this fen type. This fen type was recorded from 22 sites of the 42 sites surveyed as part of the MFS (See Appendix 6A).

This fen type occurred most commonly in regenerating inter drumlin cutaway bog areas, where peat was extensively cut out by the end of the last century and secondary fen regeneration has proceeded for a considerable period of time; in low lying cutover bog hollows between peat hag; or on the infilling margins of lakes. A feature of all of the relevés assigned to this group was their occurrence on a quaking or floating scraw of vegetation.

Two distinct variants of this vegetation type were observed during the classification of the relevé data. The first was a Transition mire rich fen variant (TMR) characterised by the growth of *Carex diandra* (relevé table no. 8 to 26), where pH values tended to range between 6 and 7.1.

The second was a Transition mire poor fen variant (TMP) which was characterised by a lack of *Carex diandra*, and an increased occurrence of *Carex curta*, *Carex rostrata inter alia*. (relevé table no. 27-40). pH in this TMP variant ranged from 5.5 to 6.8 demonstrating slightly more acidic conditions.

Transition mire – rich fen variant (TMR)

Nineteen relevés (table numbers 8 to 26) show a species composition which allows these relevés to be assigned to the Transition mire rich fen variant community, identified during the MFS, which includes species characteristic of the Caricetalia davallianae.

Species commonly occurring on this Transition mire rich fen variant included: *Calliergonella cuspidata, Hydrocotyle vulgaris, Galium palustre, Agrostis stolonifera, Carex rostrata, Caltha palustris, Equisetum fluviatile, Potentilla palustris, Cardamine pratensis, Menyanthes trifoliata, Juncus effusus and Angelica sylvestris.*

Species which differentiated this Transition mire rich fen variant from the poor fen variant included the presence of: *Carex diandra, Filipendula ulmaria, Holcus lanatus, Calliergon giganteum, Equisetum palustre, Lychnis flos-cucli, Rumex acetosa* and *Plagiomnium rostratum.*

This variant of transition mire was recorded from 15 of the 42 sites surveyed in detail (see Table 5.4).

Transition mire – poor fen variant (TMP)

Fourteen relevés (table numbers 27 to 40) show a species composition which allows these to be assigned to the Transition mire poor fen variant community, identified during the MFS, which includes species characteristic of the Caricetalia nigrae.

Species commonly occurring on this Transition mire poor fen variant included: *Hydrocotyle vulgaris, Galium palustre, Agrostis stolonifera, Carex rostrata, Equisetum fluviatile, Potentilla palustris, Cardamine pratensis, Menyanthes trifoliata, and Eriophorum angustifolium.*

Species which differentiated this Transition mire poor fen variant from the rich fen variant included: the increased abundance of *Carex curta*, *Calliergon stramineum*, *Ranunculus flammula*,

Veronica scutellata and *Lemna minor*. The TMP variant also shows a reduced occurrence or complete absence of *Carex diandra*, *Filipendula ulmaria*, *Plagiomnium rostratum*, *Rumex acetosa*, *Holcus lanatus*, *Lychnis flos-cucli*, *Equisetum palustre*, *Calliergonella cuspidata*, *Angelica sylvestris*, and *Calliergon giganteum*.

Four relevés assigned to this group (table no. 37 to 40) lack both the differential species associated with the TMR and TMP community, and contain only the commonly occurring species for TMP listed above.

This variant of transition mire was recorded from 9 of the 42 sites surveyed in detail (see Table 5.4).

5.3.4 Poor fen (relevé table no. 41 to 52)

Twelve relevés (table numbers 41 to 52) show a species composition which allows these to be assigned to Poor fen habitat which includes species characteristic of the Caricetalia nigrae to Scheuchzerietalia palustris.

pH of water samples collected from these sites ranged from 4.2 to 6.8 representing the prevailing acid conditions (with 10 of the 12 relevés having a pH below 5.8).

Species commonly occurring on Poor fen sites included: *Carex rostrata, Menyanthes trifoliata, Equisetum fluviatile, Potentilla palustris, Juncus articulatus, Eriophorum angustifolium, Carex nigra* and *Succisa pratensis.*

Species which differentiated Poor fen from the other fen types recorded during the MFS included: Sphagnum fallax, S. palustre, S. subsecundum, S. squarrosum, Polytrichum commune, Aulacomnium palustre, Carex echinata, Crepis paludosa, Carex limosa, Molinia caerulea, Potentilla erecta and Anthoxanthum odoratum.

This fen type occurred most commonly in regenerating cutaway bog areas, where remnant peatland communities occurred, in low lying cutover bog hollows between peat hags, or on flushed areas on blanket bog. A feature of all of the relevés assigned to this group was there occurrence on a firmer peat substrate which did not form of a quaking or floating scraw of vegetation.

Poor fen was recorded from 9 of the 42 sites surveyed during the MFS (see Table 5.4).

5.3.5 Revised Fen Classification Scheme based on the Results of the MFS

Table 5.3 below shows the revision of the fen classification scheme proposed for the National Fen Survey after taking account of the results of the Monaghan Fen Survey.

This scheme suggests that two variants of Transition mire should be identified, based on the floristic difference noted between relevé groups. Due to the small sample size from the MFS, the restricted geographic scope of the survey, and lack of further national data on the occurrence of this, and other Transition mire community type(s), the current classification is considered to be provisional, and subject to revision in the future.

Table 5.3. Revised classification for the main fen types recognised as part of the Monaghan Fen Survey, and their relationship to other classification schemes, phytosociological classification, together with details of key species and habitat features.

NPWS Fen Survey Habitats Classification Scheme	EU Habitats Directive Habitat; CORINE Habitat; Fossitt Habitat Scheme	Phytosociological Classification	Key Species	Habitat Examples	Site Examples
Transition Mire – Rich type	7140 Transition mires and quaking bogs; 545 Transition mires; PF3 Transition mire and quaking bog	Caricetalia davallianae	C. diandra, C. viridula, Agrostis stolonifera, Menyanthes trifoliata, Potentilla palustris, Pedicularis palustris, Calliergon spp., Scorpidium spp.	Quaking areas on secondary fen areas of cutover and cutaway bogs	Killyneill Fen, Monaghan
Transition Mire – Poor type	7140 Transition mires and quaking bogs; 545 Transition mires; PF3 Transition mire and quaking bog	Scheuchzerietalia palustris to Caricetalia nigrae	Carex limosa, C. lasiocarpa, Eriophorum angustifolium, E. gracile, Agrostis stolonifera, Molinia caerulea, Menyanthes trifoliata, Potentilla palustris, Pedicularis palustris, Sphagnum spp., Calliergon spp.	Quaking areas on blanket and raised bogs; bog laggs; secondary fen areas of cutover and cutaway bogs	Drumgallan Bog, Monaghan
Alkaline fen	7230 Alkaline fens; 542 Rich Fens Caricion davallianae & 5421 Black bog rush fens & 5422 Fens not Schoenus dominated; PF1 Rich fens and flushes	Caricetalia davallianae	Schoenus nigricans, Homalothecium nitens, Carex viridula, C. nigra, C. dioica, C. panicea, Juncus subnodulosus, Molinia caerulea, Hydrocotyle vulgaris, Ranunculus flammula, Mentha aquatica, Galium palustre, Parnassia palustris, Pinguicula vulgaris	Topogenous fens in valleys or depressions ; within transition mire and tall reed beds; calcium rich flush areas in blanket bogs; dune slack areas; wet hollows in machair	Pollardstown fen, Kildare

Table 5.3. (cont.) Revised classification for the main fen types recognised as part of the Monaghan Fen Survey, and their relationship to other classification schemes, phytosociological classification, together with details of key species and habitat features.

NPWS Fen Survey Habitats Classification Scheme	EU Habitats Directive Habitat; CORINE Habitat; Fossitt Habitat Scheme	Phytosociological Classification	Key Species	Habitat Examples	Site Examples
Cladium Fen	7210 *Calcareous fens with Cladium mariscus and species of the Caricion davallianae; 533 Fen Sedge Beds; 5331 Fen Cladium Beds; PF1 Rich fen and flush	Magnocaricion - Cladietum marisci to Caricetalia davallianae	<i>Cladium</i> <i>mariscus</i> and species of Alkaline fens (see above)	Fen beds of the emergent plant zones of lakes; Cladium stands in blanket bog flushes and fens. Excludes mono- dominant stands of <i>Cladium</i>	Pollardstown Fen, Kildare; East Burren complex, Clare
Poor Fen	Habitats Directive – NA; 544 Acidic fens; PF2 Poor fen and flush	Caricetalia nigrae	Hammarbya paludosa, Juncus effusus, Carex rostrata, C. nigra, C. curta, Sphagnum recurvum, S. teres, Calliergon stramineum	Poor fen flushes in blanket bog; soligenous depressions among grassland, cutover bogs and heath	Carrigower Bog, Wicklow; Liffey Head flush, Wicklow
Petrifying Spring with Tufa	7220 * Petrifying springs with tufa formation (Cratoneurion); 5412 Hard Water Springs Cratoneurion; FP1 Calcareous Springs	Cratoneurion	Saxifraga aizoides, Carex dioica, C. pulicaris, C. flacca, C. nigra, Pinguicula vulgaris, Equisetum palustre	Calcium rich spring areas in fens, woodland, sea cliffs, esker ridges, limestone areas, blanket bogs	Pollardstown fen, Kildare; Knocksink Wood, Wicklow; Bellacorick Iron Flush
Non- Calcareous Spring	Habitats Directive – NA; 541 Springs Montio- Cardaminetea & 5411 Soft Water springs Montio- Cardaminetea; FP2 Non- Calcareous Springs	Montio-Cardaminetea	Saxifraga hirculus, Sphagnum auriculatum, Calliergon sarmentosum, Polytrichum commune, Juncus bulbosus, Viola palustris, Ranunculus flammula, Hydrocotyle vulgaris	Cold springs, commonly dominated by bryophytes within blanket bog complexes, clay and rock cliffs poor in lime	Glenamoy Bog Complex, Mayo

5.4 Extent of Fen Habitats in County Monaghan

Following the survey of the 42 sites examined in detail as part of the Monaghan Fen Survey a total of 24 sites were found to contain fen habitats (see Figure 5.1).

Appendix 3B shows the fen habitat types believed to occur on the sites surveyed, prior to the present survey and those actually observed following the present phase of the Monaghan Fen Survey.

In total 22 sites were found to contain Transition mire; two sites contained Alkaline fen, two sites contained Cladium fen and seven sites held Poor fen communities.

The total area of fen recorded on sites during the Monaghan Fen Survey amounted to 95.6 ha. Appendix 3 shows the total fen area found on each site during the Monaghan Fen Survey. A detailed breakdown by site, of the area of each individual fen type, together with all other non-fen habitat areas recorded on sites surveyed is presented in Appendix 14. These data were obtained following the preparation of the habitat maps produced for each of the sites surveyed.

Table 5.4 shows a summary breakdown of the respective areas of each fen type recorded in County Monaghan during this survey. The individual site reports in Appendix 1 (see Volume II of this report) list the area of each fen type found on each site during the present survey.

The results in Appendix 3 show that although the original area of fen in Monaghan was estimated to be a minimum of 190 ha (based on data in Foss 2007), results from the current survey found that only 95.6 ha of fen vegetation occur on known fen sites in Monaghan.

Fens are therefore much rarer in the county than previously thought.

The discrepancy in the expected and fen area actually recorded from the current survey can in part be explained by the fact that previous surveys had misidentified certain wetland areas and classified these as fens. In many cases these "fens" were found to contain extensive marsh, reed and other wetland habitats (using the habitat classification scheme of Fossitt 2000) rather than fen habitats. In other cases the area of fen estimated at sites was found to be too high, with fen habitats occurring as relatively small restricted areas, among other wetland habitats.

Table 5.4. The number of sites with fen communities and the total extent of each fen type found on sites during the Monaghan Fen Survey 2007.

Fen Habitat Type	No. of sites	Area in ha
Transition Mire	22	76.2
TM Rich variant	15	nd
TM Poor variant	9	nd
Alkaline Fen	1	1.5
Cladium Fen	2	1.1
Poor Fen	7	16.8
Total		95.6

* nd: not determined

5.5 Environmental Conditions of Fens in County Monaghan

In total 61 water samples were taken during the field survey, 50 of which were taken from relevé locations. Of the 42 fen sites surveyed in detail, water samples were taken from 26. The original result – sheet issued by the EPA is included in the appropriate site folder. A full table of hydrochemistry results is presented in Appendix 8 along with the associated water sample number, site name and relevé code.

Unfortunately, due to conflicting work schedules in the laboratory full nutrient analysis was not carried out on 14 of the water samples, although stable metal parameters were determined on all samples.

The range, mean and median values of each chemical parameter is presented in Table 5.5 along with values for peat depth and water table depth. It can be seen that there is wide variation in the water chemistry recorded from the full suite of sites.

Water chemistry of sites varies considerably between sites (see Table 5.5), with some sites displaying acid, nutrient poor conditions while other sites are characterised by alkaline mineral rich conditions. The water chemistry reflects the source of water feeding the system which in turn is dependent on the hydrogeology of the areas.

Table 5.5.	Ranges	of	hydrochemical	variables,	peat	depth	and	water	table	depth
recorded or	n sites du	ring	g the Monaghan	Fen Survey	2007	(n=50)).			

Variable	Units	Mean	Minimum	Maximum	Median
рН	pH Units	6.52	4.50	8.20	6.5
Alkalinity	mg/I CaCO3	99.30	<12	324.00	67
Conductivity	µS/cm@25°C	250.44	44.00	630.00	195
Calcium (Ca)	mg/I CaCO3	35.21	<5	104.98	22.12
Magnesium (Mg)	mg/l	3.43	0.97	10.92	3.3
Sulphate (S)	mg/l SO4	9.72	<1	93.30	4.8
Potassium (k)	mg/l	2.47	0.97	11.24	1.66
Sodium (Na)	mg/l	7.53	<5	19.04	6.54
Iron (Fe)	µg/I	2154.54	67.10	54616.50	405.4
Manganese (Mn)	µg/I	772.27	4.10	11358.60	192
Copper (Cu)	µg/I	2.93	<1	20.20	2.1
Zinc (Zn)	µg/I	11.71	<1	263.10	1.9
Ammonia (NH3)	mg/I N	0.22	< 0.03	1.49	0.11
Total Oxidised Nitrogen (TON)	mg/I N	0.11	<0.05	2.12	<0.05
Total Phosphorus (TP)	mg/l P	0.28	<0.01	1.23	0.191
Ortho-Phosphate (OP)	mg/IP	0.04	<0.02	0.25	<0.02
Water Table Depth	cm	-3.98	-20	10	0
Peat Depth	cm	>200	30	>200	>200

Table 5.6 shows the mean concentrations of water chemistry parameters recorded within different fen types as classified by the Monaghan Fen Survey 2007. As expected, it is clear that poor fens are characterised by nutrient poor, acid conditions.

Following a one-way ANOVA statistical test (and Tukey post-hoc test), significant differences (p<0.05) in mean pH, Calcium concentration, Alkalinity, Electrical Conductivity, Magnesium

concentration and Sulphate concentration are evident between the different fen types (see Table 5.6), although in the case of Sulphate no differences between groups were shown in the Tukey post-hoc test. Significant differences occur between alkaline fens and poor fens for all of these parameters. There appears to be an increasing gradient from acid calcium poor water in the poor fens increasing to less acid conditions in the transition mires to more alkaline calcium rich conditions in the alkaline fens.

Table 5.6. Mean values (+/- Standard Error of the Mean) of hydrochemical variables recorded from different fen types during the Monaghan Fen Survey 2007.

Variable	Units	Alkaline Fen (& Cladium Fen) (n=6)	Transition Mire (Rich) (n=18)	Transition Mire (Poor) (n=12)	Poor Fen (n=12)	Marsh (n=2)
рН	pH Units	7.6 (0.3)a	6.6 (0.1)b	6.5 (0.2)b	5.6 (0.3)c	6.8 (0.1)
Alkalinity	mg/l CaCO3	187.8 (40.1)a	117.2 (19)ab	52.8 (12.9)b	49.6 (19.5)b	147 (70)
Conductivity	µS/cm @25°C	438.3 (53.6)a	283.8 (33.6)ab	196.3 (38.2)bc	123.4 (34.6)c	275.5 (117.5)
Calcium (Ca)	mg/l Ca	75.4 (6.9)a	42.1 (7.2)b	19.4 (5.4)bc	13.6 (6.2)c	44.5 (22)
Magnesium (Mg)	mg/l	5.7 (1.1)a	3.7 (0.4)ab	2.8 (0.3)b	2.0 (0.6)b	3.6 (0.9)
Sulphate (S)	Mg/I SO4	24.3 (10.8)	6.0 (0.9)	15.9 (7.8)	3.0 (1)	2.4 (0.3)
Potassium (k)	mg/l	3.7 (1.6)	2.7 (0.4)	2.7 (0.9)	2.1 (0.5)	1.41 (0.4)
Sodium (Na)	mg/l	7.6 (0.8)	8.0 (0.6)	7.1 (0.6)	7.0 (1.2)	5.7 (0.7)
Iron (Fe)	µg∕I	3884.4 (3744.5)	928.2 (279.5)	691.6 (167.1)	5770.9 (4453.3)	3524.9 (3212.6)
Manganese (Mn)	µg∕I	1574.4 (1459.5)	660.3 (216.8)	1675.7 (1015)	107.5 (25.4)	350.7 (253.2)
Copper (Cu)	µg∕I	2.7 (1.7)	2.7 (0.4)	4.9 (1.6)	2.8 (0.7)	1.65 (0.7)
Zinc (Zn)	µg∕I	44.7 (43.7)	5.5 (3.3)	13.8 (5.6)	11.4 (3.2)	10.1 (9.1)
Ammonia (NH3)	mg/l N	0.21 (0.11)	0.25 (0.05)	0.25 (0.11)	0.11 (0.03)	0.04
Total Oxidised Nitrogen (TON)	mg/l N	0.05	0.06 (0.01)	0.05	0.05	0.05
Total Phosphorus (TP)	mg/l P	0.24 (0.18)	0.25 (0.03)	0.30 (0.08)	0.32 (0.1)	0.21 (0.14)
Ortho-Phosphate (OP)	mg/IP	0.03	0.07 (0.02)	0.03 (0.01)	0.02	0.04 (0.02)
Water Table Depth	cm	-15 (3.1)	-1.9 (1.3)	-1.3 (1.5)	-5 (2.3)	0 (5)
Peat Depth	cm	>200	>200	>200	>200	>200
Species Richness		21 (3.5)	19.11 (0.9)	15.4 (1.4)	17.5 (2)	13.5 (1.5)

Bold text: significant differences between the mean values of different fen types following ANOVA (p<0.05). Different letters indicate significant differences between groups (e.g. for example in the case of pH, alkaline fen (a) is significantly different from all other groups; whereas Transition mire Rich (b) is not significantly different from Transition mire Poor which is also (b)). Marsh samples were excluded from analysis as there were only 2 samples. Peat depth was also excluded. n = sample size.

Although significant differences were not found between the TMR and TMP vegetation types, it is clear that differences are consistent with water samples from TMR being more alkaline and calcium rich than the TMP sites (see Table 5.6), thus supporting the occurrence of two different variants as revealed in the vegetation data analysis.

Transition mires are characterised by the near neutral water chemistry and intermediate mineral enrichment. This implies that they are dependent on groundwater that is not calcareous in nature.

There is little variation found in nutrient (Total Phosphorous, Ortho-phosphate and Total Organic Nitrogen) levels within or between the different fen types.

The results of the DCA analysis are presented in Figure 5.3, with relevés (Figure 5.3a) and species plotted (Figure 5.3b) on a two dimensional ordination diagram. In general, those relevés that occur closest to each other on the ordination diagram are most similar in species composition. Biplot arrows indicate those environmental variables that are most important in determining species composition. The arrow length is proportional to the importance and the direction indicates the axis along which the variable increases (due to the absence of nutrient data from 14 samples, total oxidised nitrogen, ortho-phosphate and ammonia were not included as environmental variables in the analysis).

Figure 5.3a confirms that the groups revealed by Twinspan relevé analysis are also evident as clusters in the DCA ordination thus supporting the classification of fen types. Axis 1 accounts for 42% of the variation in the species data and is negatively correlated with pH, Alkalinity, Calcium and Magnesium concentration and Water Table height (see Figure 5.3 and Table 5.7). Axis 2 accounts for 27% of the variation in species data and is positively correlated with Electrical Conductivity, pH, Alkalinity and Magnesium but negatively correlated with Water Table depth (see Figure 5.3 and Table 5.7).

The importance of base-richness as a primary determinant of the composition of mire vegetation has long been recognised, as reflected in the gradient bog > poor fen > rich fen (Wheeler et al. 1995). This gradient is apparent in the classification of fen types undertaken during the current study as is evident from Figure 5.3 and Table 5.6.

The availability of nutrients such as N, P and K is undoubtedly of key importance to plant growth and vegetation composition in fens, but general relationships are often difficult to establish (Wheeler et al. 1995). Wheeler et al (1995) suggested that this may be due to the fact that simple measurement of N and P concentrations in fen waters does not adequately represent the availability of these nutrients, or because different nutrients are limiting in different situations. 'Eutrophication' of fens (i.e. enrichment with N, P or K) is widely regarded as an important cause of vegetation change (loss of species richness in particular) within fens in NW Europe, though its influence has often been more inferred than demonstrated (Wheeler et al 1995; Verhoeven et al. 1983). Methods used to reduce fertility of enrichment of fens are outlined by Bakker & Olff (1995).

In summary the results of the hydrochemical analysis confirms that Alkaline Fen sites are dependant on a continual supply of oligotrophic Calcium rich groundwater. In contrast, vegetation that occurs on Transition Mires is dependant on less mineral rich groundwater, with a circum-neutral pH. There is little published data on hydrochemical characteristics of fen types in Ireland. Dowding (1990) reported that Pollardstown Fen (an alkaline fen habitat) had conductivity ranging from 484 to 635μ S/cm, which is comparable with the range recorded for alkaline fens in this study. Calcium (122 - 125mg/l) and Magnesium (8.5 – 9.1mg/l) concentrations recorded at Pollardstown were somewhat higher while Total Phosphorus (0.04 – 0.08mg/l) and Ammonia (0.06 – 0.09 mg/l) concentrations recorded were somewhat lower than those recorded from Alkaline Fens in the current study (Dowding 1990). Brooks et al. (2004) give a range of various parameters characteristic of Alkaline Fen vegetation in the UK which is comparable with the results of the current study.

Total Oxidised Nitrogen (Nitrates and Nitrites) concentrations were relatively low being below the lowest detection level of 0.05mg/l at most sites; with the only exceptions being a sample from each of Nafarty Fen (2.12mg/l), Dunaree (0.41mg/l) and Rafinny Lough (0.13mg/l).

The highest water tables were recorded from Transition mires indicating that the vegetation within these habitats require a high year-round water table as previously reported by Curtis et al (2006). In contrast, Alkaline Fens surveyed during the current study had lower water table, indicating that

they may withstand water levels below the ground surface, as has been reported previously by Curtis et al (2006) and Brooks et al (2004) who reported a range of summer water levels from -34 to + 5 cm which is comparable to those recorded from the current study. The current study provides useful baseline data on the nutrient status of fen surface waters against which future monitoring can be compared. Unfortunately because of the lack of knowledge and data, it is not possible at present to draw many conclusions regarding the nutrient status of fens in the current study.

(see Appendix 8 for Hydrochemistry data)

Table 5.7. Eigenvalues of axes and Pearson correlation coefficients of environmental variables with axis 1, 2 and 3 of DCA.

	AXIS 1	AXIS 2	AXIS 3
Eigenvalue	0.420	0.267	0.195
Water Table	299	522	.072
Electrical Conductivity	393	.558	230
рН	409	.525	310
Alkalinity	298	.592	107
Calcium	309	.620	173
Magnesium	239	.488	182
Sulphate	028	.164	150
Total Phosphorus	.032	047	.096
Potassium	158	.043	077
Sodium	185	.028	036
Iron	.185	.152	.287
Manganese	236	.037	018
Copper	113	006	.009
Zinc	.101	.120	.100

Bold text: indicates those variables that are displayed on Figure 5.3 (Pearson correlation >0.2)

Figure 5.3A. DCA ordination diagram of relevés recorded during the Monaghan Fen Survey 2007. Bi-plot lines indicate the strength and direction of significant environmental variables (r > 0.2; see Table 5.7).

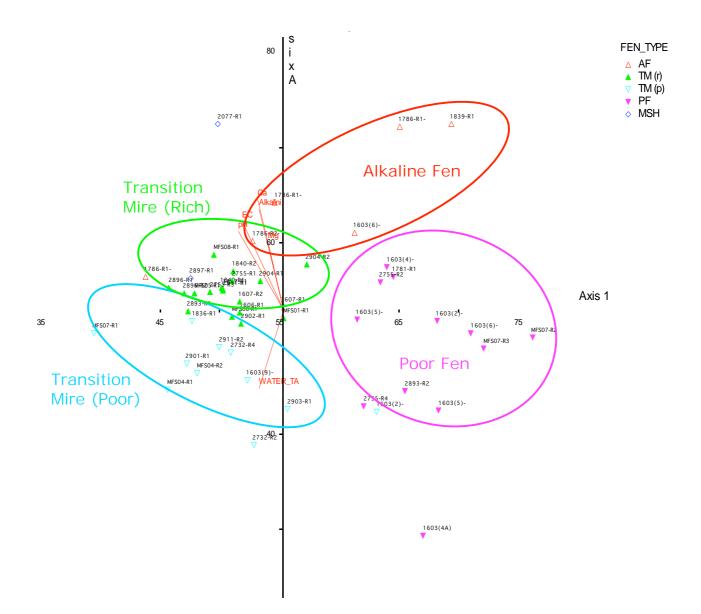
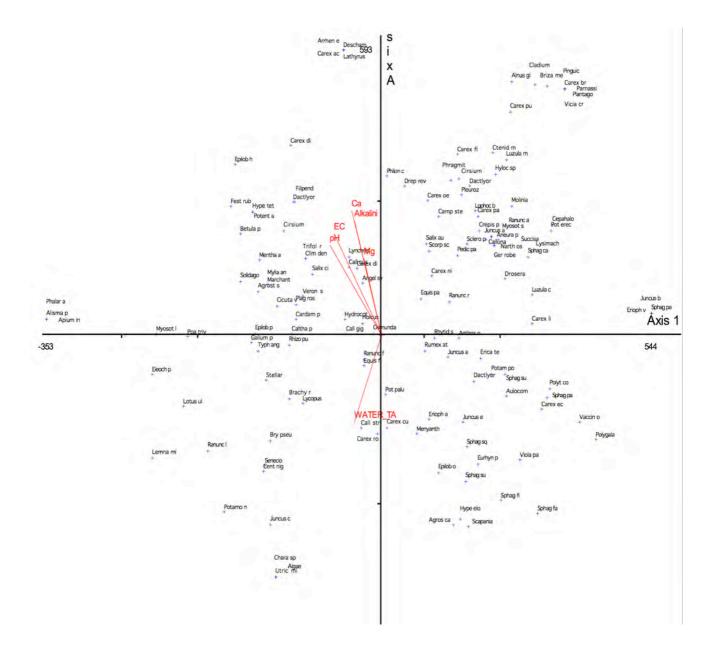



Figure 5.3B. DCA ordination diagram of species recorded during the Monaghan Fen Survey 2007. Bi-plot lines indicate the strength and direction of significant environmental variables (r > 0.2; see Table 5.7).

5.6 Ranking of Sites and Conservation Recommendations

Following the detailed survey of sites in County Monaghan each site was evaluated for its conservation value based on a set of 15 criteria (see Chapter 4 for details). Each of these criteria was scored in relation to each site on a four point scale and score totals for each site were calculated (see Appendix 9). Those sites which scored highest are deemed to have a greater ecological value. These site scores allowed ranking of sites into a series of categories from International importance to sites with a Low Local conservation value (see Chapter 4 for details).

Of the 42 sites surveyed in detail during the Fen Survey, site scores ranged from 3 to 67. The possible maximum that a site could score was 75.

Table 5.8 shows the number of sites in each conservation category following the ranking scheme adopted in the Monaghan Fen Survey 2007 (see Chapter 4 for details). This evaluation is based primarily on features of the site, the habitats present and overall damage and threats faced by the site (see Appendix 1 for individual site reports). Due to absence of data it takes only minimal account of general species values of the site (e.g. birds, mammals, insects, fish populations etc.). The addition of such values, based on future species surveys and information, may change the overall ranking of certain sites.

Table 5.8. The number sites and their conservation ranking following the Monaghan Fen Survey 2007.

Site Conservation Status	Ranking Code	No. of sites
International Value	А	3
National Value	В	16
County value	C +	8
High local value	С	4
Moderate local value	D	6
Low local value	E	5

5.6.1 Internationally important sites (A)

The three internationally important sites, Moylan Turlough (2531), Eshbrack Bog (1603) and the Kilroosky Lough Cluster (1786) contain habitat types which are rare or uncommon in a European context, namey Turlough, Blanket Bog and Hard Water Oligotrophic lakes. These sites have primarily been ranked as of international conservation value, meriting Special Areas of Conservation (SAC) designation by NPWS, because of the presence of these habitat types.

Only one site, the Kilroosky Lough Cluster has been given this designation to date. This is in fact the only SAC presently listed for County Monaghan.

Fen habitats, which only occur at Eshbrack Bog (Poor fen and Transition mire) and Kilroosky Loughs Cluster (Alkaline fen and *Cladium* fen), although of ecological interest, and in the case of *Cladium* fen which a priority habitat under the EU Habitats Directive, tend to form only a small percentage of the overall site area. These fen habitats do, however, add considerable interest to the overall ecological variation present within these sites.

5.6.2 Nationally important sites (B)

The 16 nationally important sites (B rating) contain habitat types which are rare or uncommon in Ireland, and merit designation under the NHA system. Based on thr results of the current study, these are now being proposed by the authors for inclusion in the NHA designation process being undertaken by the NPWS.

Of these sites, nine are already listed for designation as proposed NHA's by NPWS namely: Killyvilly Lough (1839), Lisabuck Lough (1835), Lisarilly Bog (1781), Lislannan Bog (1840), Lough Smiley (1607), Mullaghmore Lake (South) (1785), Mullaglassan Lough (1837), Rafinny Lough

(1606) and Rosefield Lake and Woodland (1784). On these sites the formal designation process should be completed.

The remaining seven sites have no formal conservation designation, namely Aghnamullen Fen (2904), Cornaglare (MFS-01), Crinkill Lough (MFS-07), Drum Lough (MFS-02), Drumgallan Bog (2732), Killycooly Lough (MFS-08) and Killyneill Fen (2755). On these sites the formal designation process should be initiated.

With the exception of Drum Lough, Lisabuck Lough, Mullaghmore Lake (South) and Rosefield Lake and Woodland, which are primarily sites with a lake and associated non-fen wetland interest, the remaining sites being proposed for designation as NHA's contain significant fen element within the sites, and is the main reasons the sites are being proposed for NHA designation.

5.6.3 County Conservation Value (C +)

Of the 8 sites considered to be of County conservation value, the MFS found that most are relatively extensive and contain good examples of fen habitat, and / or other habitat types.

In the case of Annagheane Lough (1836) and Drumcor Lough (1841) these sites have already been designated as proposed NHA's by the NPWS. We recommend that this conservation designation should be completed and maintained.

In the case of Coravilla-Rakeen Fen (2901), Crumlin Lough (MFS-04), Greaghlas Fen (2897), Lisinisky Marsh (2911), Morgans Lough (MFS-05) and Priestfield Lough (2614) the MFS found that these sites merit conservation due to their County conservation value, although at present they have no formal conservation designation.

Effective conservation of these sites will require listing of these sites in the Monaghan County development plan and Local Area Plans. The occurrence of Priestfield Lough, within the Rossmore Forest Park, managed as an amenity woodland area by Coillte Teoranta may also afford protection to this site. Should a local designation such as Local Biodiversity Area (LBA) be implemented as recommended by Anonymous (2005) come into being these sites should be given such as designation.

With the exception of Drumcor Lough, Greaghglas and Priestfield Lough which are primarily sites with a lake and associated non-fen wetland interest, limited areas of fen communties are an element within the remaining sites, and are one the reasons these sites are being proposed for High local value designation.

5.6.4 High Local Value (C)

Of the four high local value sites some have extensive water bodies but other wetland habitats generally tend to be poorly developed.

In the case of all four sites, Aghacloghan (2902), Ardkirk Fen (MFS-03), Bocks Upper (MFS-06), and Sheetrim Fen (2892) these sites merit conservation due to their High local conservation value, although at present they have no formal conservation designation.

Effective conservation of these sites will require listing of these sites in the Monaghan County development plan and Local Area Plans. Should a local designation such as Local Biodiversity Area (LBA) be implemented as recommended by Anonymous (2005) come into being these sites should be given such as designation.

Aghacloghan and Bocks Upper in particular, contain reasonably good examples of fen communities, while the remaining two sites have no fen habitats.

5.6.5 Moderate Local Value (D)

The six sites which are of Moderate local value (D rating) are all either very small or have been heavily modified by drainage or other impacts.

Only one of these sites Lisquigy (2896) was found to contain any significant fen communities. Fens were absent on the remaining sites.

Effective conservation of these sites will require listing of these sites in the Monaghan County Development Plan and Local Area Plans. Should a local designation such as Local Biodiversity Area

(LBA) be implemented as recommended by Anonymous (2005) come into being these sites should be given such as designation.

5.6.6 Low Local Value (E)

Five site were considered to have a low local rating (E rating), following the MFS survey, as they have been extensively modified and retain only minimal local wildlife value.

Three of these sites, which were proposed for NHA designation in the past, are now considered to be so altered, that de-designation is recommended (see Section 5.8 below).

Should conservation of the Low local value sites be considered as an option for these sites, they will require listing in the Monaghan County Development Plan and Local Area Plans. Should a local designation such as Local Biodiversity Area (LBA) be implemented as recommended by Anonymous (2005) come into being these sites should be given such as designation.

5.6.7 Future Conservation and Protection of Sites

The future conservation of the fen and wetland sites proposed above depends on a number of factors including conservation designations, ownership, legal status, planning controls, habitat management and protection of water sources, factors which are effectively controlled or under the remit of either the NPWS and Monaghan County Council.

Future conservation of the areas surveyed and found to be of conservation value in County Monaghan will require:

Designation: Sites found to be of SAC or NHA conservation value and status should be appropriately designated by the NPWS.

The SAC and NHA sites, as well as sites of County, High and Moderate local conservation value should be protected, and need to be listed in the County Council Development Plan and other related area plans. A local nature conservation designation similar to the SLNCI (Sites of Local Nature Conservation Value) designation in Northern Ireland would be useful in ensuring the conservation of these sites. Such a designation (Local Biodiversity Areas (LBA's)) has been recently proposed by a report commissioned by the Heritage Council (Anonymous 2005).

The Planning & Development Act 2000 requires Local Authorities to prepare Local Area Plans (LAPs) for towns and villages within their functional areas which satisfy specific criteria. The LAPs go through various public consultation stages before final adoption. The LAP sets out a framework to ensure that development occurs in a planned and sustainable (environmental, economic and social) manner over the plan's six-year lifetime. Fens identified as of county conservation value should be included in such LAPs.

Planning control: Control of damaging developments under the Planning Acts is the most immediate way in which conservation of the most important sites can be achieved, and should be implemented by the County Council, particularily in relation to the issue of landfill and dumping onto fen sites.

Management: Agricultural management, such as grazing and control of fertiliser run-off on surrounding lands, may be important in the conservation of certain sites. For example, light grazing of wet grassland or fen by certain livestock can prevent scrub encroachment. The Rural Environment Protection Scheme (REPS) may offer a mechanism to help conserve and manage these areas. Drainage needs to be restricted, and afforestation of sites should not be permitted as both these activities would seriously impact on the conservation value of fen and other wetland habitats.

Pollution control: Control of water pollution is a key factor in the conservation of fen sites. This depends on regular monitoring and prevention of nutrient enrichment at source whether this is from individual sewage treatment systems, agricultural run-off or other sources. Wetlands assist in purifying waters (both surface and groundwater) that pass through them.

Dumping and infilling control: Dumping and infilling was found to be a major damaging activity during MFS affecting 20 of those sites surveyed (see section 5.9 below). Further dumping and infilling of wetland sites should be strictly prohibited with a severe penalty imposed for such an offence. This should be a real deterrent for potential offenders in the future. In cases where

infilling has already taken place, if there is evidence of indirect effects on water quality due to the polluting nature of the infill, then the fill should be removed.

On wetland sites, where the fill is inert and the impact is loss of habitat, then consideration on whether the removal of fill is justified should be based on the quality of the wetland habitat. Where costs are prohibitive, some other form of compensation for loss of habitat such as wetland enlargement of the remaining wetland area should be required.

Responsibility for the contol of dumping and infilling rests with Monaghan County Council under the Planning & Development legislation and Waste Management legislation.

Control of invasive species: Removal of invasive species such as *Rhododendron ponticum* should be considered, as well as selective scrub removal on sites. The latter may be achieved by introducing a suitable grazing regime. Appropriate management regimes should be established with advice from a qualified ecologist and scientific personel from NPWS.

Provision of Public information: The provision of information on the conservation value of wetland and fen sites in particular is fundamental to the future local support for retention and enhancement of wetland sites. Such an information programme should be introduced on sites recommended for conservation and local protection; especially those that are located in close proximity to populated areas and easily accessible sites.

The programmes might include site signposting to advertise the nature conservation value of areas (a feature lacking on all of the sites surveyed during the MFS); a public information leaflet on the value of wetlands (emphasising both economic and biodiversity values); and information displays or exhibitions that could tour county locations to raise public awareness of wetland values.

On-site interpretation facilities would need to be vandal proof and be maintained on a regular basis.

The public information leaflet on wetland conservation could be prepared and distributed by the Heritage Office of Monaghan County Council. Some of the key information contained in this fen survey report and other sources could be used to make this as informative as possible. This would help to increase public understanding and support for wetland conservation measures.

The use of sites for recreational purposes should be explored, as this land-use when managed correctly can be beneficial to wetland conservation by building an appreciation of the beauty and value of fens and other wetlands.

5.7 Cross Border Conservation Issues

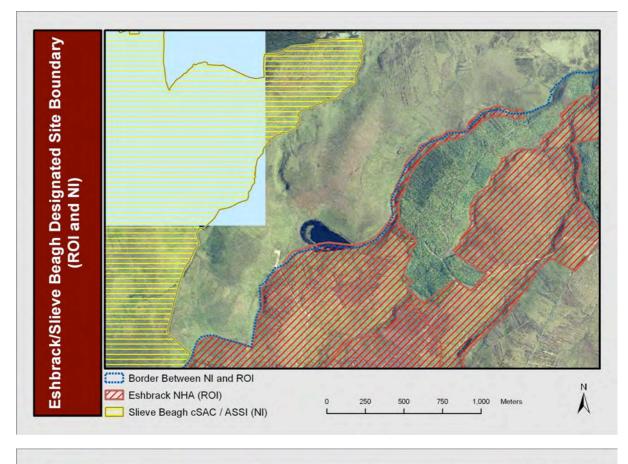
On five of the sites surveyed in detail during the Monaghan Fen Survey 2007, which contained lake and habitat components which cross the international border with Northern Ireland, discontinuities in conservation designations on either side of the border were noted (see Table 5.9 below) which resulted in inadequate protection of sites.

Unless these discrepancies in conservation designations are resolved by the National Parks and Wildlife Service (ROI) and the Environment and Heritage Service (NI) it is difficult to see how the long term protection of these sites can be assured. Effective long term conservation and protection of these cross-border sites can only be achieved by ensuring the protection and proper management of the entire hydrological unit that constitutes these sites.

This issue relating to cross border sites occurred in the Republic of Ireland within the Kilroosky Lough Cluster SAC, Eshbrack Bog NHA, Drumgallan Bog (an undesignated site in the ROI), Killyvilly Lough NHA and Lislannan Bog NHA. These discrepancies are illustrated in the air photographs shown Figures 5.4 A to E below.

Appendix 11 illustrates the names of the sites on either side of the border and their relevant site codes, details the miss matched conservation designations or complete lack of them on either side of the border, and makes recommendations to resolve the discrepancies in conservation designations, so as to ensure favourable conservation status and long-term protection for these important cross border sites.

Table 5.9. The location of sites with mismatched cross border conservation designations with respective site names and codes in Republic of Ireland and Northern Ireland.


Site Code ROI	Site Name and Conservation Status ROI	Site Code NI	Site Name and Conservation Status NI
001603	ESHBRACK BOG, NHA	UK0016622	SLIEVE BEAGH, SAC
001786	KILROOSKY LOUGH CLUSTER, SAC	SAC009	MAGHERAVEELY MARL LOUGHS, SAC
001839	KILLYVILLY LOUGH, NHA	SAC009	MAGHERAVEELY MARL LOUGHS, SAC
002732	DRUMGALLAN BOG, Undesignated	ASSI182	DRUMCARN, ASSI
001840	LISLANNAN BOG, NHA	None	None

* NHA – Natural Heritage Area

* SAC – Special Area of Conservation

* ASSI – Area of Special Scientific Interest

Figure 5.4A. Eshbrack Bog NHA in the Republic of Ireland, with the international border with Northern Ireland (NI), and the section of blanket bog and Lough Naheery in NI which has no current conservation designation.

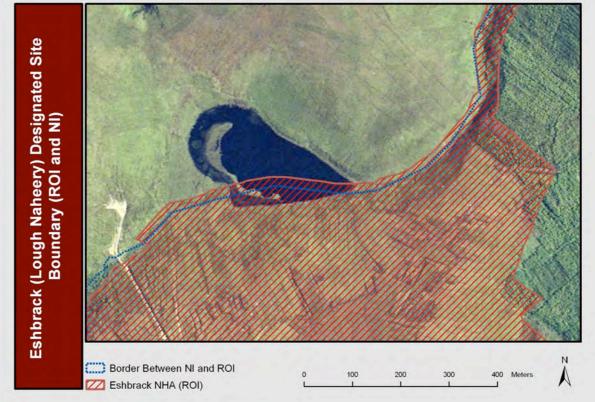


Figure 5.4B. Kilroosky Lough Cluster SAC in the Republic of Ireland, with the international border with Northern Ireland (NI), and the section of Dummys Lough in NI which has no current conservation designation.

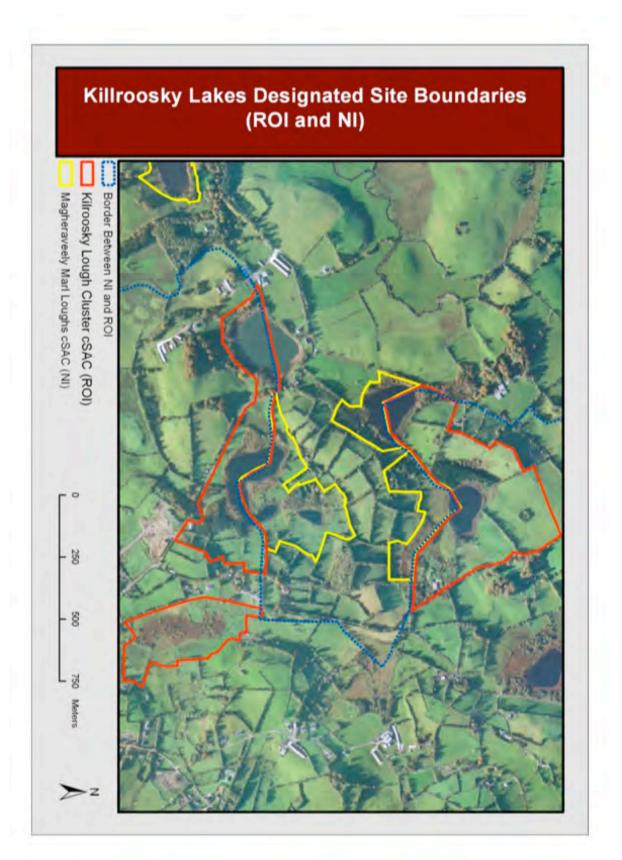


Figure 5.4C. Killyvilly Lough NHA in the Republic of Ireland, with the international border with Northern Ireland (NI), and a section of and Magheraveely Marl Loughs SAC in NI where conservation designations are missing in one or the other jurisdiction.

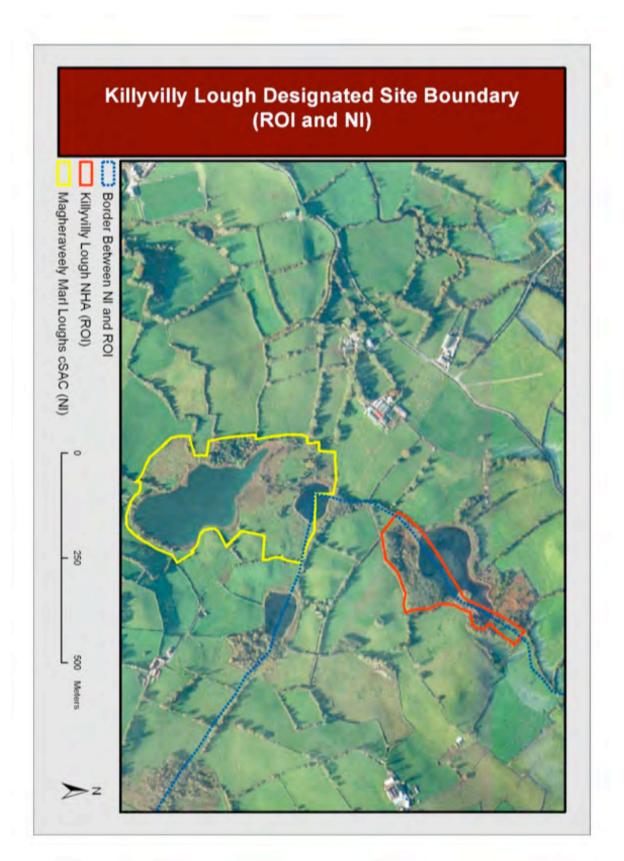


Figure 5.4D. Drumgallan Bog in the Republic of Ireland, which has no conservation designation, with the international border with Northern Ireland (NI), and the section of the bog NI which has been designated as an ASSI.

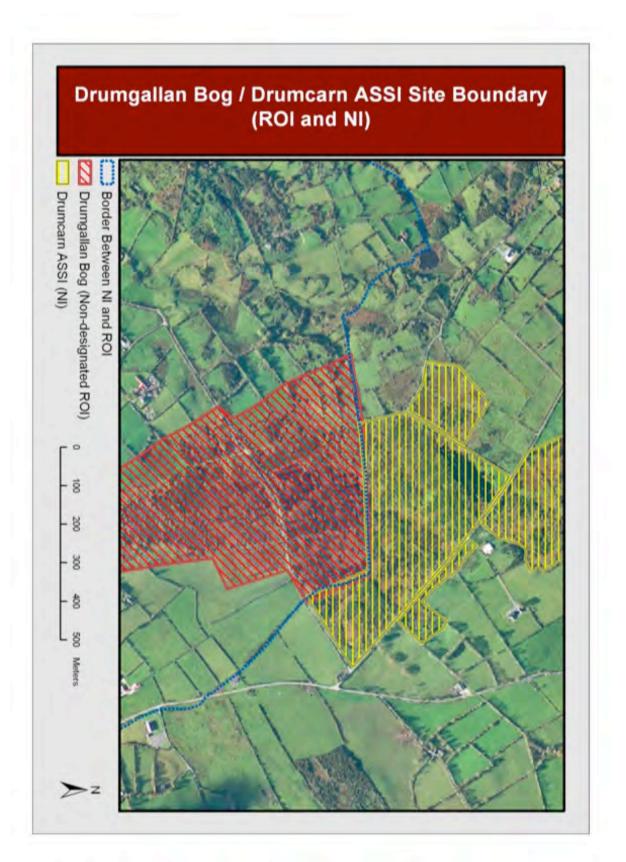
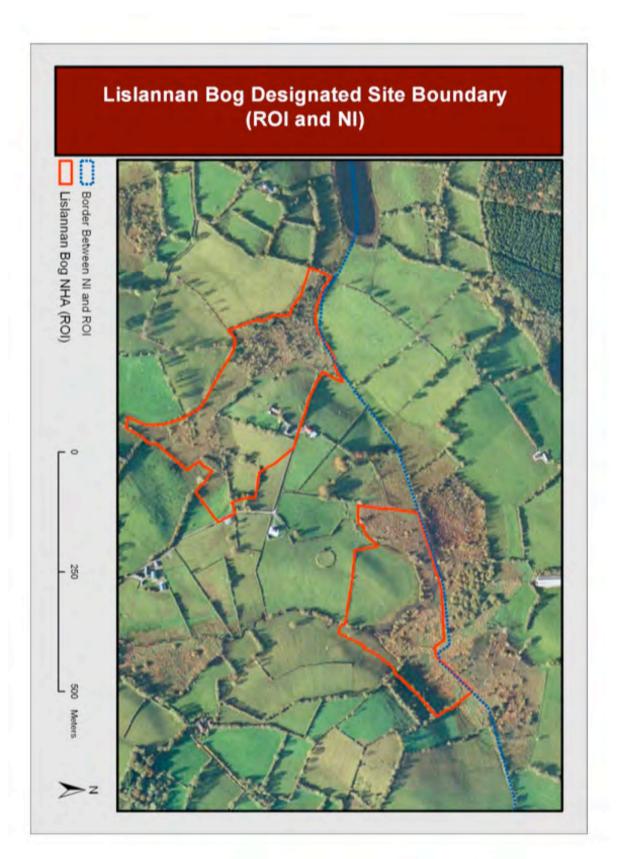



Figure 5.4E. Lislannan Bog NHA in the Republic of Ireland, with the international border with Northern Ireland (NI), and the section of the bog in NI which has no current conservation designation.

5.8 Change in Conservation Value of Sites

Three sites surveyed during the current Monaghan Fen Survey 2007, which had an existing conservation designation prior to the survey, were found to have been seriously affected by drainage activities, resulting in habitat deterioration and loss of most if not all of their conservation value.

The sites in question were Allagesh Lough (1780); Killyhoman Marsh (1782) and Nafarty Fen (2077), (see Appendix 1 for site descriptions and Appendix 2 for illustration the damage which has been caused to these sites).

In the case of the first two sites, Allagesh Lough (1780); Killyhoman Marsh (1782), extensive drainage works, carried out over a decade ago, have contributed to a significant drop in the water table which has resulted in a deterioration or loss in the conservation worthy wetland and former fen habitats recorded on these sites. In the case of Allagesh, the site is now dominated by a *Phalaris arundinacea* marsh and areas of wet grassland, which have only a low conservation value. Extensive drainage works on Killyhoman have completely dried out the site which has been invaded and overgrown by a dense Birch (*Betula pubescens*) scrub community.

In the case of Nafarty fen, which has been used extensively as a water supply for the town of Carrickmacross, water abstraction and the construction of various water collection structures has significantly altered the naturalness of the site.

It is the opinion of the survey team that these sites should be de-listed as NHAs, although they still retain a lower conservation value. Allagesh Lough (1780) and Killyhoman Marsh (1782) were both rated as of Low local conservation value (ranking E), while Nafarty Fen (2077) was rated as of Moderate local conservation value (ranking D) in the context of the MFS 2007 (see Appendix 9 for further information on site conservation evaluation).

5.9 Threats and Damage to Fens in County Monaghan

The majority, if not all, the fen and wetland sites surveyed in County Monaghan have been subject to some degree of damage or modification from their natural state in the past. This feature has been observed on other Irish peatland types, most noteably raised bogs (Cross 1990; Fernandez *et al* 2005; Derwin *et al* 2002; Foss *et al* 2001), which are surrounded by agricultural land, where reclamation and drainage works are an on-going agricultural management tool which affects the hydrological condition of adjacent wetlands.

The Monaghan Fen Survey (MFS) also found that 36 of the 42 sites surveyed are threatened with further damage which will continue to reduce their value for biodiversity conservation (see Table 5.10). Details of the past damage and current threat to each individual site surveyed as part of the MFS can be viewed on the "Site Threats" layout in the NPWS Fen Survey database which accompanies this report, or in the full site description for each site in Appendix 2.

The major sources of damage and threat were as follows:

5.9.1 Drainage

Drainage has visibly affected the greatest number of sites and has generally led to drying out and reduction in the wetland area on sites. In certain cases this has also been associated with land reclamation.

At least 20 of the wetlands have suffered from drainage, while 18 are threatened or likely to be affected by this activity in the future. Some of the sites may have been drained as long ago as the nineteenth century, while others have been recently drained and the effects are evident in the vegetation and habitat change occurring on these sites today. Three sites (see section 5.8 above) have in fact been so negatively affected by drainage works over the last decade in particular, that their continuing conservation value is questionable.

5.9.2 Land reclamation, infilling and domestic refuse dumping

Land reclamation often follows drainage work, although infilling of wetlands can take place independently of drainage.

During the course of the Monaghan Fen Survey 2007 it became apparent that, on many of the sites surveyed, and on wetlands within the county in general, infilling with building waste and soil is a serious problem which is affecting the conservation status of sites. Infilling of wetlands which are an important source of biodiversity within the County is not compatible with the long term protection of their biodiversity value.

Of the 42 sites surveyed in detail during the course of this survey 20 were found to be affected by this activity (13 have been affected by this activity in the past; while 16 sites are threatened by on-going infill activities). This represents 47% of the sites surveyed during the MFS. More worrying is that 6 of the sites on which current dumping activities were noted have been designated as proposed Natural Heritage Areas (NHA) by NPWS. These infill and dumping activities are not compatible with the long term survival and protection of these conservation worthy areas. There may also be a wider indirect impact on the water quality of the wetland if the fill contains toxic or polluting substances, especially where infilling is accompanied by the dumping of household refuse. This type of damage is very costly to reverse.

Appendix 10 lists the sites where such dumping and infilling was noted (in some cases associated with the dumping of domestic refuse), and assesses the severity of these activities.

It would also appear that most of the infilling has no development consent, though at a small number of sites planning notices were noted. If the planning and waste permit authority (i.e. Monaghan County Council) is serious about protecting biodiversity in County Monaghan it must take action to halt all illegal infilling of wetlands.

To ensure that wetlands are not used as repositories for the building waste streams, revision by the County Council of the construction and demolition rubble recycling scheme would provide increased protection to these sites in the future.

The introduction of a policy to refuse planning permissions on sites which were previously infilled without authorisation should be considered by Monaghan County Council. Such a move would be a real economic deterrent to the continued unauthorised infilling of wetlands.

The Council might also consider an education and sign posting programme, at least at the proposed NHAs and other conservation worthy sites, to make people aware of the damage they are causing when they infill wildlife sites in the County.

5.9.3 Afforestation

Planting of trees on wetland soil is generally accompanied by drainage. Conifer plantations have been established on the immediate margins or on a number of wetlands in the County (Bocks Upper, Kilroosky Lough Cluster, Drumcor Lough, Aghacloghan, Eshbrack, Graffagh and Corinshigo) while broad-leaved tree planting has been undertaken on the margin of Coravilla - Rakeen. Consideration should be given to the likely future impacts of these woodlands, and their removal should be considered.

A number of other wetlands have areas of wet woodland present, in particular on marginal zones. In some cases this wet woodland development may be due mainly to natural colonisation by Willow species and Alder, however the spread of such woodland areas over a site may also be an indication of hydrological conditions that favour the spread of woodland at the expense of fen communities. It may be necessary to monitor the changing status of wet woodland areas, and where these threaten the long term survival of open fen areas, some degree of scrub removal or a suitable grazing regime to halt the woodland spread may be need to be considered in relation to the future management of these sites.

5.9.4 Pollution

Water pollution and its effects on fens may be a difficult problem to identify and resolve in wetland habitats. Nutrient enrichment from inflow sources or run-off from neighbouring agricultural land may be a problem. These nutrient sources need to be carefully monitored to ensure that they are not adding key nutrients to the wetland system which might cause vegetation changes.

Although significant changes in water chemistry, caused by water pollution has been cited (Curtis *et al* 2006) as a factor affecting site vulnerability, studies are lacking on the physio-chemical requirements of most fen habitat types in Ireland. The current study should go some way towards filling this information gap.

Buffering capacity is considered to be high for Transition mire and Alkaline fens (due to nature of the organic peat substrate), but not accurately known. Phosphorus is the limiting nutrient to growth in most calcareous fen habitats (Doyle & Ó Críodáin 2003)) while Nitrogen has been shown to be the limiting nutrient in many poor fens (Koerselman and Verhoeven 1995). Elevated levels of phosphorus leads to vigorous growth of grasses over other species, resulting in the loss of fen species diversity. The role of increased nitrogen levels in the species composition of Transition mire and Alkaline fen is unclear.

Transition mire is characteristic of more nutrient poor and less alkaline conditions, and it may be assumed that changes in either of these water parameters (Nitrogen, Phosphorus) will result in unfavourable conditions for long term survival of the habitat.

During the course of the Monaghan Fen Survey, water samples were often collected from stands of vegetation located near the centre of the sites. In these samples little evidence of elevetated nutrient or polluting levels were detected, although 5 sites were identified where changes in vegetation were noted and ascribed to the effects of pollution, while a further 10 sites were considered to be potentially under threat from water pollution.

These results may indicate that sites were not being polluted, or that the marginal or inflow pollution sources were not detected at the sample locations chosen possibly due to internal cycling of nutrients and complex biochemical processes. Further research is required to ascertain the likely future effects of pollution on the various fen habitats as noted in Monaghan.

A common feature of Monaghan fens is the unusually small catchment of many systems which often comprises no more than the surrounding drumlins. These sites may provide ideal opportunities for controlling the input of nutrients from surrounding land-uses. The predominant land-use however on the surrounding drumlins is intensive agriculture and the boundary between this land and the fen is usually abrupt.

Such a nutrient monitoring programme might be implemented as part of the Water Framework Directive (2000/60/E). Efforts to protect water dependent habitats, which include Alkaline Fen, Transition Mire, and Calcareous Fens with *Cladium mariscus* are being taken within each River Basin District. This is critical as far as protection of the water supplies for these groundwater dependent systems are concerned.

All SACs and, in future, NHAs in which these fen habitats are a qualifying interests will be listed in the Register of Protected Areas drawn up for each River Basin District.

The Water Framework Directive requires that an integrated monitoring programme be established within each river basin district. These monitoring programmes will in many cases be extensions or modifications of existing programmes and will enable collection of the physical, chemical and biological data necessary to assess the status of surface and groundwater bodies in each river basin district.

Where water quality or supply issues are, or have the potential to, impact adversely on sites, this will have to be dealt with through the Programme of Measures associated with each River Basin District Management Plan.

5.9.5 Invasive species

The invasion of alien plants into wetland habitats is also a difficult problem to resolve as these species are generally vigorous and may be quite resistant to most control measures. At Killyneill Fen (Site 2755) a small area of the woodland contains stands of *Rhododendron ponticum*. This plant can also invade open peat areas so is a threat to the entire wetland. Its removal is recommended as part of any management plan that is developed for the site.

5.9.6 Other Impacts

In addition to the main threats listed above, a number of other impacts were noted at some of the site visited during the MFS. The impacts of these activities is likely to have some affect on the wetlands on which they occur, and should perhaps be quantified and addressed in any management plans developed for these sites.

These other potential impacts included small to medium scale water abstraction schemes for local use, noted at Nafarty Fen, Crinkill Lough and Rafinny Lough.

Where sites allowed a degree of visitor access (most notably for fishing activities) littering and trampling damage were noted in some cases, especially along routes leading to fishing stands (Kilroosky Lough Cluster).

Some evidence of shooting was recorded at a number of sites. The main impact resulting from this activity is on the wildfowl populations that utilise the wetlands especially in winter. Shooting should be prohibited in all those sites that are known to be utilised by significant numbers of wildfowl or threatened bird species. Shooting is not compatible with the conservation objectives of NHA's and SAC's and therefore should be prohibited in these areas.

Table 5.10. The number sites damaged and threatened by various activities as revealed during the Monaghan Fen Survey 2007.

Type of Activity	No. of sites damaged by this activity	No. of sites threatened by this activity
Drainage	20	18
Infilling/Dumping	13	16
Afforestation	7	1
Water Pollution	5	10
Invasive species	1	6

5.10 Potential Fens Sites requiring future Survey in County Monaghan

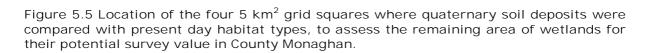
Due to the abundance of wetland sites in County Monaghan it was not possible in the context of this survey to visit all sites within the County. In total 69 sites were examined during the 2007 Monaghan Fen Field Survey.

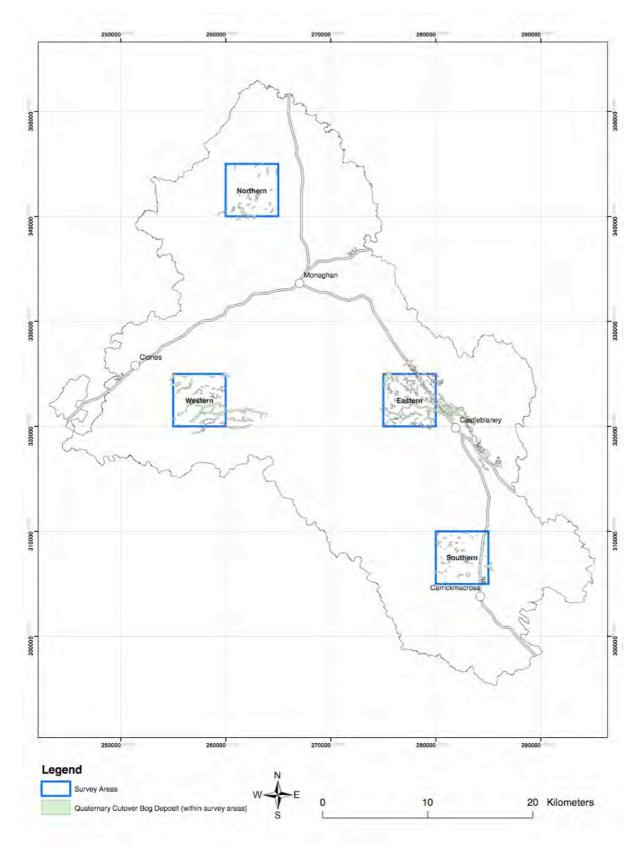
During the course of the survey, a number of additional sites were discovered as part of the field survey and associated examination of air photographs. In addition some extra sites were submitted for survey consideration by third parties, in particular Lord Tennison and Alan Hill, the BSBI County Recorder for Monaghan. A list of the additional wetland sites, which it was not possible to survey, but which may contain a fen interest are referred to in Appendix 4 & 5.

As a means of estimating number and area of other potential wetland areas in the county a GIS based desktop survey was carried out. From this analysis of four square grids (5 X 5 km) within the county (see Figure 5.5), where quaternary soil deposits were compared with the habitat types that can be identified from air photographs, it would appear that there may be a considerable number of additional wetland areas remaining in Monaghan worthy of survey.

Table 5.11 presents the results of this desk-top exercise to estimate the percentage of wetland habitat remaining in the county. Figure 5.5 shows the location of the sample areas of the survey. The results of this survey shows that of the original area of raised bog in the county approximately 21% remains as wetland habitat. Most of the raised bog areas (estimated 58%) have been drained and is now under improved pasture, the remainder comprising wet grassland and woodland habitats (estimated 21%).

This survey indicates that although 80% of raised bogs have lost all wetland interest, there is likely to be a large number (approximately 500 sites) that contain wetland habitat which may comprise some fen vegetation. This confirms that it is unlikely that the current MFS 2007 has surveyed all fens in the county and that there are likely to be a number of sites that have yet to be surveyed. However, during this exercise, of the 173 units surveyed with remote sensing techniques, very few appeared likely to have any significant areas of fen, many of the sites appeared to have reed and marsh vegetation types although a field survey would be the only way to confirm this.


Table 5.11. Desktop habitat survey of cutover raised bogs from four sample blocks (5 X 5 km) throughout county Monaghan (sources: Meehan 2004 and Ordnance Survey of Ireland Colour Aerial Photographs).


Survey Area	Total Area of Blocks (ha)	Number of Cutover Bog Units	Total Area of Bog Units (ha)	Number and (percentage) of Units Now Containing Wetland	Estimate Area in ha and (percentage) of Wetland Remaining
Eastern	2500	68	803.1 (32%)	19 (28%)	144 (18%)
Northern	2500	29	114.8 (5%)	3 (10%)	6.8 (6%)
Southern	2500	46	100.2 (4%)	9 (20%)	36.4 (36%)
Western	2500	30	456.9 (18%)	7 (23%)	126.3 (28%)
Total	10000	173	1475 (15%)	38 (22%)	314 (21%)
County	129356	2267	12246 (9.5%)	499 (22%) ¹	2572 (21%) ²

¹ Assuming that 22% of bog units throughout the county now contain wetland units as recorded in the sample blocks surveyed in detail.

² Assuming that 21% of wetland units throughout the county now contain wetland as recorded in the sample blocks surveyed in detail.

Expert opinion would suggest that the known sites recommended for survey, as well as potential fen sites that might be identified following a detailed air GIS based desk survey, be examined as part of a follow up survey of fen sites in Monaghan, using the survey methodology developed and reported on in this report.

5.11 Methodological Considerations for the forthcoming National Fen Survey

A number of points have emerged from the Monaghan Fen Survey which might be considered in the planning and implementation of future surveys forming part of the National Fen Survey. These are detailed below.

The Monaghan Fen Survey project developed a detailed site survey system for fens, which could be used on the forthcoming National Fen Survey. This incorporates the following main elements:

- background research on known or potential fen sites, using previous report and survey data; accessing expert data sources; and using various GIS data sources;
- identification of additional potential sites made by examination of air photographic data and during the field survey period;
- field survey system designed and tested;
- digital data storage, analysis and presentation system developed and tested;
- conservation evaluation and ranking system of sites for the NFS created.

Based on the results of the MFS it is likely that a significant number of sites presently considered to contain fens at the national level, may not in fact contain this habitat. The area of fen identified within these sites is also likely to be over estimated at present. To obtain accurate information on the scale, and geographic distribution of the Irish fen resource it is essential that additional county fen surveys are undertaken without delay.

From an analysis of the GIS maps, it is likely that a significant number of additional potential fens exist in Monaghan (and by extension nationally) than were identified in advance and during the course of the present survey (see section 5.10 above). Although many of the larger, more well known sites appear to have been surveyed, it is likely that numerous smaller sites still exist which may have a conservation value and should be considered for survey.

It is possible that a longer period spent on GIS air photograph analysis would have yielded additional (though smaller) sites for survey consideration in Monaghan. However, a larger site survey list would also require additional field survey time and resources to survey properly. The MFS has shown that only by examining sites on the ground is it possible to be sure that the site contains fen vegetation, and of which type. These details cannot be identified with certainty from GIS data sources alone. A decision to undertake a detailed GIS habitat study, of each county in the context of each fen survey (or for the entire country as part of the NFS), would have significant manpower implications. For example, in the case of the MFS, a representative sample of four 5km squares were surveyed. This took approximately 10 man hours to complete (excluding the development of the GIS), on this basis a GIS survey of the entire country as carried out in the MFS would have taken approximately 144 man hours to complete (based on 58 X 5km squares).

In terms of the detailed fen survey of sites, the time required to prepared for, and undertake the detailed field survey of fen sites is equivalent to time needed to prepare final site reports and maps; analyse relevé data; undertake water chemistry data analysis; present results and prepare the overall survey report.

It is suggested that a simplified first round national fen survey scheme needs to be developed and tested, which would allow a larger number of sites to be assessed in brief, before the detailed fen survey work is undertaken. This might include:

- a more detailed GIS air photographic evaluation of potential fen site locations within each county;
- followed by drive-by survey and quick field examination to identify the best candidate fen sites requiring detailed survey; and make a simple site record of the main habitats present;
- this initial reconnaissance survey could be followed by a detailed fen survey on the smaller number of sites identified as highly likely to contain fen habitats. The detailed survey would collect relevé data, produce habitat and site maps, analyse site hydrochemistry, conduct evaluation and conservation ranking of site and produce the full digital site report.

One of the requirements of the MFS was to prepare a duplicate set of site folders containing maps, site description and final habitat information, for NPWS and Monaghan County Council. Although preparation of one copy of site folders, for the Natural Heritage Area archive system in NPWS is an

essential requirement – the MFS survey team question the necessity to duplicate all paper records for the County Council (or other third party), especially as a complete digital record of the sites is already included within the report format designed for the MFS. This project requirement should be dropped from future county surveys where NPWS undertakes the survey in partnership with a third party.

Within the context of the MFS, for sites which were identified as of national or international conservation value (i.e. NHA or SAC level), a requirement of the project was the completion of a NPWS Natural Heritage Area data form. The current version of this NHA form is somewhat out of date. Prior to the survey of additional sites as part of the NFS this data form should be up-dated to reflect current habitat classification schemes, site threats and damage recording schemes, habitat area estimation inter alia. One option in this regard might be to incorporate this form and the associated data fields required into the NPWS Fen Survey database, which would allow digital entry and storage of results, and final output.

During the MFS water samples were collected from the majority of sites surveyed in detail, and which contained fen habitats. The results obtained from this hydrochemical analysis proved useful and supplied valuable data on the environmental factors occurring on the fen sites and in relation to the community types recorded there. Full analysis of water samples as undertaken during the MFS, if applied to the NFS would have significant cost implications.

Should resources limit the number of water samples that could be analysed in future, perhaps restricting water sample collection to a limited number from each of the key fen community types recognised during future surveys would provide adequate detailed hydrochemistry data.

Provision of a portable pH meter and electrical conductivity meter, to future survey teams should be considered, and would give adequate information on water chemistry as part of the general survey.

One other equipment requirement for future surveys, which the NPWS should consider providing surveyors with is a hand help Global Positioning System (GPS) device. GPS was found to be useful in some larger sites (Eshbrack) but in general due to the small and accessible nature of most of those sites surveyed in Monaghan was of limited value, having a good aerial photograph at an appropriate scale and with a grid overlain proved more useful in most situations. GPS would be especially useful in accurately locating small areas of fen within large sites (e.g. blanket bog areas) where accurate positioning can be difficult due to lack of useful local topographic features or where significant changes in local features has occurred due to habitat drainage, infill or fluctuating water levels.

Value of Fens

Fens and adjacent open water them have a high scenic value and beauty that adds recreational and economic value to the countryside.

VIRONMENTAL INFORMATION

6. Conclusions

6.1 Monaghan Fen Survey

This survey set out to examine 30 potential fen sites in County Monaghan and assess their fen interest, and locate additional sites. Following the completion of the field survey, a total of 42 sites (with 69 sub compartments) had been examined in detail together with 14 sites which were examined in brief.

The results of the Monaghan Fen Survey, for the 30 sites which had been proposed for survey, indicates that the extent of fens was over-estimated (Foss 2007) in the county in terms of both the number of sites believed to contain fen and the estimate of fen habitat extent on sites.

However, due to habitat conditions within the county (based on an analysis of GIS quaternary deposits information, present day habitats on these areas, and local topographical conditions), additional fen sites are likely to occur. In addition a number of sites have been identified, though not surveyed, which would indicate that additional un-surveyed fen sites occur within the county.

A follow up survey of fen habitats within the county is required to ascertain the final distribution and extent of fens in county Monaghan.

At present only 96.5 ha of fen have been identified in county Monaghan making the habitat rare within a county context. Measures to ensure the long term protection, conservation and management have been proposed for those sites identified as of conservation importance at county level or higher. The protection and long term biodiversity protection within these sites will require actions by both Monaghan County Council and the National Parks and Wildlife Service.

6.2 National Fen Survey

A methodology for the detailed survey of fen sites has been developed and piloted during the course of the Monaghan Fen Survey.

This methodology allows the creation of a full digital record of the sites surveyed to include various site maps (GIS air photograph, 6 inch map etc) and a final site habitat map, photographic site record, and a description of the site and habitat particulars, together with phytosociological, environmental and hydrochemical data on the fen communities present.

This survey methodology is ideal for the detailed survey of sites with a known fen interest as part of a National Survey of Fens. This standardised procedure will allow future comparison of fen sites nationally, and allow selection of a national network of key conservation worthy fen sites.

However, due to the volume of "potential" fen sites to be examined on a national scale, and the likelihood of the discovery of additional fen sites, it is suggested that a less intensive, more rapid preliminary survey approach may be more resource efficient, in short listing potential fen sites for detailed survey. This approach is supported by the high number (40%) of sites that were listed as "possible" fen sites in Monaghan – but which were subsequently found not to include any significant fen areas, following their detailed survey.

A structure for the on-going survey of Irish fens might then consist of:

- more detailed GIS examination of air photography to shortlist possible fen sites should be undertaken, possibly at national level;
- every effort made to contact local specialists and stakeholders seeking site information;
- the development of a rapid field assessment Phase I Fen Survey system to identify fen sites and exclude those sites with other related wetland habitats including marsh; wet woodland; and reed bed communities, prior to full fen survey;
- preparation of methods manuals should be undertaken so that future surveys can follow a standard methodology, we propose both a:
 - Phase I survey manual to follow when carrying out the initial county wetland survey to identify potential fen sites within a county

- Phase II manual for the detailed survey of fen sites as outlined in detail in this report
- training programme for surveyors should be introduced at start of survey project to ensure consistency and standardisation of methods;
- each survey team should comprise at least two individuals;
- should an extensive programme of survey be introduced, it would be advisable to appoint a co-ordinator who would be responsible for on-going training, quality control and supervision of county surveys;
- consideration be given to an invertebrate survey of a selection of fen sites to give greater understanding of the species diversity of fens in Ireland, as has been done in parts of Northern Ireland;
- a habitat action plan for each fen type should be drawn up.

Only following the completion of the various county shortlists would a detailed Fen Survey be undertaken on sites identified as the potential location for fen communities.

Fen Damage

Traditionally fens have been regarded as waste places and valued less than farmland. Dumping of household waste, drainage, and infill with soil and building rubble continue to take their toll on these fragile habitats.

7. Bibliography

- Anonymous, 1981, National Heritage Inventory. Areas of Scientific Interest in Ireland, An Foras Forbartha, Dublin, pp. 166.
- Anonymous, 1986, Irish Peatland Conservation Council Action Plan 1986-1988, Irish Peatland Conservation Council, Dublin, pp. 56.
- Anonymous, 1989, The IPCC Action Plan 1989-1992, Irish Peatland Conservation Council, Dublin, pp. 54.
- Anonymous, 1992, The Irish Peatland Conservation Council Policy Statement and Action Plan 1992-1997, Irish Peatland Conservation Council, Dublin, pp. 100.
- Anonymous, 2002, Habitat Survey Guidelines A Standard Methodology for Habitat Survey and Mapping in Ireland (Draft), The Heritage Council, Kilkenny.
- Anonymous, 2004, Guidelines for Assessment of Ecological Impacts of National Roads Scheme, National Roads Authority, Dublin.
- Bakker, J.P. & Olff, H., 1995, Nutrient dynamics during restoration of fen meadows by haymaking without fertilizer application. In: Wheeler, B.D., Shaw, S.C., Fojt, W.J. and Robertson, R.A., (eds.) Restoration of temperate wetlands, Chichester, Wiley & Sons.
- Barron, S., 2006, County Monaghan Wetland Survey. BEC Consultants, Internal Report, Monaghan County Council.
- Brooks, A.W., José, P.V. & Whiteman, M.I., 2004, Ecohydrological guidelines for lowland wetland plant communities, Report of Environment Agency, Peterborough.
- CEC, 1992, Council Directive of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora (92/43/EEC), Official Journal of the European Communities No. L 206/35, 22 July 1992.
- Chinery, M., 1973, A field guide to the Insects of Britain and Northern Europe, Collins, London.
- Clapham, A.R., Tutin, T.G. & Warburg, E.F., 1981, Excursion Flora of the British Isles, Cambridge University Press, Cambridge.
- Corley, M.F.V. & Hill, M.O., 1981, Distribution of Bryophytes in the British Isles. A catalogue of their occurrence in vice-counties, British Bryological Society, Cardiff
- Cross, J., 1990, The Raised Bogs of Ireland, their ecology, status and conservation. Report to the Minister of State at the Department of Finance, The Stationery Office, Dublin.
- Crushell P., 2000, Irish Fen Inventory A review of the status of fens in Ireland, Irish Peatland Conservation Council, Dublin, pp. 100.
- Crushell P., 2002, SACs IN IRELAND NGO REVIEW 2002. A report prepared for An Taisce, Birdwatch Ireland, Coastwatch Ireland, Irish Peatland Conservation Council and the Irish Wildlife Trust, Published by Irish Peatland Conservation Council, Dublin.
- Curtis, T. & McGough, N., 1988, The Irish Red Data Book 1 Vascular Plants, Wildlife Service, Stationery Office, Dublin pp. 168.
- Derwin, J. et al., 2002, Raised bog Natural Heritage Areas (NHA) Project, Internal Report, National Parks and Wildlife Service, Dublin.
- Dobson, F., 1981, Lichens An Illustrated Guide, The Richmond Publishing Co. Ltd., Great Britain.
- Douglas, C. & Grogan, H., 1985, Survey to locate raised bogs of Scientific interest in Counties Galway (E) and Roscommon. Part II, Internal Report, Wildlife Service, Dublin.
- Douglas, C. & Grogan, H., 1986, Survey to locate raised bogs of Scientific interest in Counties Longford, Westmeath and East Mayo (also Counties Cavan, Leitrim, Sligo & Roscommon), Internal Report, Wildlife Service, Dublin.
- Douglas, C. & Grogan, H., 1987, Survey to locate raised bogs of Scientific interest in Counties Clare and Kerry, Internal Report, Wildlife Service, Dublin.
- Douglas, C. & Grogan, H., 1987, Survey to locate raised bogs of Scientific interest in Connemara, Counties Galway, Internal Report, Wildlife Service, Dublin.
- Douglas, C. & Mooney, E., 1984, Survey to locate raised bogs of Scientific interest in Counties Galway (east) and Roscommon. Part I, Internal Report, Wildlife Service, Dublin.
- Douglas, C. & Ryan, J. , 1981, Blackwater River proposed arterial drainage scheme. Environmental Impact Assessment, Unpublished report, Forest and Wildlife Service, Dublin.
- Douglas, C., Dunells, D., Scally, L. & Wyse Jackson, M., 1990, A survey to locate lowland blanket bogs of scientific interest in County Donegal and upland blanket bogs in Counties Cavan, Leitrim and Roscommon, Internal report, National Parks and Wildlife Service, Dublin.
- Douglas, C., Garvey, L., Kelly, L. & O'Sullivan, A., 1989a, A survey to locate blanket bogs of scientific interest in County Kerry and County Sligo, Internal report, National Parks and Wildlife Service, Dublin.
- Douglas, C., Garvey, L., Kelly, L. & O'Sullivan, A., 1989c, A survey to locate blanket bogs of scientific interest in County Mayo Part II, Internal report, National Parks and Wildlife Service, Dublin.

- Douglas, C., Garvey, L., Kelly, L. & O'Sullivan, A., 1989b, A survey to locate blanket bogs of scientific interest in County Galway Part II, Internal report, National Parks and Wildlife Service, Dublin.
- Douglas, C., Lockhart, N. & Ryan, J., 1983, Pre-drainage survey Finn/Lackey Catchment Counties Monaghan & Cavan, Unpublished report, Forest and Wildlife Service, Dublin.
- Dowding, P., 1990, Pollardstown Fen report: hydrological investigation, Draft unpublished report for National Parks & Wildlife Service, Dublin.
- Doyle, G.J. & Ó Críodáin, C., 2003, Peatlands fens and bogs. In: Otte, R. (ed.) Irish Wetlands: Distribution, ecology, uses and economic value, University College Dublin Press.
- Dwyer, R., 2000, Protecting Nature in Ireland: The NGO Special Areas of Conservation Shadow List. A report prepared for An Taisce, Birdwatch Ireland, Coastwatch Ireland, Irish Peatland Conservation Council and the Irish Wildlife Trust, Published by the Irish Peatland Conservation Council, Dublin.
- European Commission, 2003, Interpretation manual of European Union Habitats. Version EUR 25, European Commission DG XI
- Ferguson-Lee, J., Willis, I & Sharrock, J.T.R., 1983, The Shell Guide to the Birds of Britain and Ireland, Michael Joseph Ltd., London
- Fernandez, F., Fanning, M., McCorry, M. & Crowley, W., 2005, Raised bog monitoring project 2004-2005, Unpublished Report. National Parks and Wildlife Service, Dublin.
- Fojt, W. , 1993, Update to Quick Reference to Fens. English Nature Research Reports No. 21, English Nature, Peterborough
- Foss, P.J., 2006, Monaghan Fen Site Reports. Field Excursion by Peter Foss, Colman Ó Críodáin NPWS, and Shirley Clerkin Heritage Officer Monaghan Co. Co. - 14 to 15 August 2006, Unpublished Report, National Parks and Wildlife Service.
- Foss, P.J., 2007, National Parks & Wildlife Service Study of the Extent and Conservation Status of Springs, Fens and Flushes in Ireland 2007, Internal report for the National Parks and Wildlife Service, Department of the Environment, Heritage and Local Government, Ireland.
- Foss, P.J. & McGee, E., 1987, A survey to locate blanket bogs of scientific interest in County Mayo, Internal Report, Wildlife Service Dublin.
- Foss, P.J. & O'Connell C.A. (eds.), 1996, The Irish Peatland Conservation Plan 2000, Irish Peatland Conservation Council, Dublin.
- Foss, P.J., O'Connell C.A. & Crushell P. (eds.), 2001, Bogs and Fens of Ireland Conservation Plan 2005, Irish Peatland Conservation Council, Dublin, pp. 144.
- Fossitt, J., 2000, A Guide to Habitats in Ireland, The Heritage Council, Ireland.
- Geraghty, M., Farrelly, I., Claringbold, K., Jordan, C., Meehan, R., and Hudson, M., 1997, Geology of Monaghan-Carlingford. A geological description to accompany the Bedrock Geology 1:100,000 Scale Map Series, Sheet 8/9, Monaghan-Carlingford. Geraghty, M. (ed.), Geological Survey of Ireland.
- Hammond R.F., 1979, The Peatlands of Ireland, Soil survey Bulletin No 35, An Foras Talúntais, Dublin.
- Hammond, R.F., 1984, The Classification of Irish peats as surveyed by the National Soil Survey of Ireland, 7th International Peat Congress, Dublin.
- Heath, D., 1995, An introduction to experimental design and statistics for biology, UCL Press Limited, London.
- Hill, M.O., 1979, TWINSPAN A FORTRAN programme for arranging multivariate data in an ordered two-way table by classification of individuals and attribute, Cornell University, Ithaca, New York
- Hill,M.O. & Gauch, H.G., 1980, Detrended correspondence analysis: an improved technique, Vegetatio 42: 47-58.
- Holyoak, D.T., 2003, The distribution of Bryophytes in Ireland: An annotated review of the occurrence of liverworts and mosses in the Irish Vice-Counties, based mainly on the records of the British Bryological Society, British Bryological Society, Broadleaf Books, U.K.
- Jahns, H.M., 1983, Collins Guide to Ferns Mosses and Lichens of Britain and Northern and Central Europe, Collins, London.
- Jermy, A.C., Chater, A.O. & David, R.W., 1982, Sedges of the British Isles, Botanical Society of the British Isles, London.
- JNCC, 2007, Habitat account raised bogs and mire and fens: 7140 Transition mires and quaking bogs, JNCC Web site, Special Areas of Conservation SAC selection . www.jncc.gov.uk/ProtectedSites/SAC selection.

- JNCC, 2007, Habitat account raised bogs and mire and fens: 7220 Petrifying springs with tufa formation (Cratoneuron), JNCC Web site, Special Areas of Conservation SAC selection . www.jncc.gov.uk/ProtectedSites/SAC selection.
- JNCC, 2007, Habitat account raised bogs and mire and fens: 7210 Calcareous fens with Cladium mariscus and species of the Caricion davallianae, JNCC Web site, Special Areas of Conservation SAC selection . www.jncc.gov.uk/ProtectedSites/SAC selection.
- JNCC, 2007, Habitat account raised bogs and mire and fens: 7230 Alkaline fens, JNCC Web site, Special Areas of Conservation - SAC selection . www.jncc.gov.uk/ProtectedSites/SAC selection.
- Kelly, D.L. & Iremonger, S.F., 1997, Irish wetland woods: The plant communities and their ecology, Biology and Environment: Proceedings of the Royal Irish Academy, 97B 1 pp. 1-32.
- Koerselman, W. & Verhoeven, J.T.A., 1995, Eutrophicaltion of fen ecosystems: external and internal nutrient sources and restoration strategies. In: Wheeler, B.D., Shaw, S.C., Fojt, W.J. and Robertson, R.A., (eds.) Restoration of temperate wetlands, Chichester, Wiley & Sons.
- Lockhart, N., 1984, A Report on the wetland vegetation of the Dunkellin and Lavally river catchments (Galway), Internal Report National Parks and Wildlife Service.
- Lockhart, N., 1987a, A method of evaluating wetlands a case study on the Finn River catchment, County Monaghan, Ireland, Irish Geography, 20, pp. 75-81.
- Lockhart, N., Madden, B., Wolfe-Murphy, S., Wymer, E. and Wyse Jackson, M., 1993, National ASI Survey. Guidelines for ecologists, Unpublished Report. National Parks and Wildlife Service, Dublin.
- Lousley, J.E. & Kent, D.H., 1981, Docks and Knotweeds of the British Isles, Botanical Society of the British Isles, London.
- Martin, J., 2006, Survey of rare/threatened and scarce vascular plants in County Monaghan, BEC Consultants Internal Report, National Parks and Wildlife Service.
- McCune, B. & Mefford, M., 1997, PC-ORD for Windows, Oregon, MjM Software.
- Meehan, R., 2004, Soils Parent Material Map. Forest Inventory and Planning System Integrated Forestry Information System (FIPS-IFS), Teagasc, Ireland.
- Meikle, R.D., 1984, Willows and Poplars of Great Britain and Ireland, Botanical Society of the British Isles, London.
- Moloney, G., 2006, Two hundred years of Co. Monaghan Bogs In: Johnston, J. (ed.) Monaghan Studies in Local History, National University of Ireland, Maynooth pp. 165-186.
- Mooney, E., 1991, Mountain blanket bog survey, Internal report, National Parks and Wildlife Service, Dublin.
- Moore, J.A., 1986, Charophytes of great Britain and Ireland, Botanical Society of the British Isles, London.
- Ó Críodáin, C., 1988, Parvocaricetea in Ireland, Ph.D. Thesis, National University of Ireland.
- Ó Críodáin, C. & Doyle, G.J., 1994, An overview of small-sedge vegetation: syntaxonomy and a key to communities belonging to the Scheuzerio-Caricetum nigrae (Nordh. 1936) Tx 1937, Biology and Environment: Proceedings of the Royal Irish Academy, 94B, pp. 127-144.
- O'Connell, C. & Mooney, E., 1983, Survey to locate midland raised bogs of Scientific Interest, Internal Report, Wildlife Service, Dublin.
- O'Connell, M., Ryan, J.B. & Macgowran, B.A., 1984, Wetland Communities in Ireland: a phytosociological review. In: Moore, P.D. (ed.) European Mires, Academic press, London pp. 303-364.
- Phillips, R., 1977, Wild flowers of Britain, Pan Books Ltd., London.
- Phillips, R. , 1980, Grasses, Ferns, Mosses & Lichens of Great Britain and Ireland, Pan Books Ltd., London.
- Preston, C.D., Pearman, D.A. & Dines, T.D., 2002, New Atlas of the British and Irish Flora, Oxford University Press, pp. 910.
- Ramao, C., 1996, Interpretation manual of European Union Habitats. Version EUR 15, European Commission, Brussels.
- Ratcliffe, J.D., 1977, A nature conservation review, Cambridge University Press, Cambridge.
- Reynolds, J.D., 1996, The Conservation of Aquatic Systems, Royal Irish Academy, Dublin.
- Rieley, J. & Page, S., 1990, Ecology of plant communities. A phytosociological account of the British Vegetation, Longman Scientific & Technical, England.
- Scannell, M.J.P. & Synnott, D.M., 1972, Census catalogue of the flora of Ireland, The Stationery Office, Dublin.
- Scannell, M.J.P. & Synnott, D.M., 1987, Census catalogue of the flora of Ireland, The Stationery Office, Dublin.

- Sheehy Skeffington, M. & O'Connell C., 1998, Peatlands of Ireland. In: P. Giller (ed.) Studies in Irish Limnology, University College Cork, Cork.
- Smith, A.J.E., 1980, The Moss Flora of Britain and Ireland, Cambridge University Press, Cambridge.

Tutin, T.G., 1980, Umbellifers of the British Isles, Botanical Society of the British Isles, London.

Verhoven, J.T.A., van Breek, S., Dekker, M. & Storm, W., 1983, Nutrient dynamics in small mesotrophic fens surrounded by cultivated land. I. Productivity and nutrient uptake by the vegetation in relation to the flow of eutrophicated ground water, Oecologia (Berlin), 60, 25-33.

Watson, E.V., 1981, British Mosses and Liverworts, Cambridge University Press, Cambridge

Webb D.A., Parnell, J. & Doogue, D., 1996, An Irish Flora, Dundalgan Press Ltd., Dundalk.

- Wheeler, B.D., 1984, British Fens, In: Moore, P.D. (ed.) European Mires, Academic Press, London, pp. 303-364.
- Wheeler, B.D. & Shaw, S.C., 1995, A Focus on fens controls on the composition of fen vegetation in relation to restoration. In: Wheeler, B.D., Shaw, S.C., Fojt, W.J. and Robertson, R.A., (eds.) Restoration of temperate wetlands, Chichester, Wiley & Sons.
- White, J. & Doyle, G.J., 1982, The Vegetation of Ireland. A Catalogue Raisonne. In: White J. (ed.) Studies on Irish Vegetation, Royal Dublin Society, Dublin. pp. 289-368.
- Wolfe-Murphy, S.A. & Murphy, C., 2002, An Ecological Survey of the Slieve Beagh/Eshbrack Bog area, County Monaghan, Internal report, Truagh Development Association.

8. Appendices

In the report appendices which follow, the PDF layouts (produced in general from Excel files) have been formatted and reduced to allow printing of tables at A4 page size. The original Excel spreadsheets from which these PDF's were produced are included on the CD rom included with this report.

Contents – Report Appendices Volume I

3. List of Fens in County Monaghan Surveyed in detail on the MFS	85
 List of Sites in County Monaghan Surveyed in Brief on the MFS to assess their potential fen interest 	89
5. List of Sites Worthy of Survey supplied by Alan Hill, BSBI County Recorder for Monaghan to the MFS	91
6. Phytosociological Relevé Classification and Twinspan Vegetation Data Analysis from the MFS	92
7. Fen Survey Relevé Card and Site Record Form	107
8. Hydrochemistry Data from Water samples taken on sites during the MFS	111
9. Conservation Evaluation of Sites Surveyed on the MFS	114
10. List of sites where dumping and infill were noted as part of the MFS	116
11. Cross Border Sites where Conservation Designations require harmonisation	117
12. Additional Data Fields and Layouts included in the NPWS Fen Survey database	119
13. Habitat Classification Schemes for Irish fens used on the MFS	131
14. Habitat areas mapped on sites surveyed during the MFS	147
15. Geological and Geophysical Maps of County Monaghan	149
Contents – Report Appendices Volume II	
Appendices continued	1-274
1. Monaghan Fen Survey 2007 Individual Site Reports, containing: Site Survey Report Six Inch Site map, Boundary data and location of Field Survey Notes	

Contents – Report Appendices Volume III

Site Air Photograph Site Habitat Map

Appendices continued	1-279
2. Monaghan Fen Survey 2007 Site Photographic Record and Notes	

Monaghan Fen Survey 2007 Appendix 3A. List of fens in County Monaghan surveyed in detail with site source, survey status and conservation designation prior to survey on the Monaghan Fen Survey 2007.

s
Ť
Total
F

Totals			69			1,919			
Site Code	Site Name	Site Source	Number of discrete sub sites for survey	Date Monaghan Fen Survey Completed	Survey Status prior to Monaghan Fen Survey	Estimated total site area	Grid Reference	Existing Conservation Designations	MFS Ranking after Survey
002900	AGHABOY TOWNLAND FEN	Original NPWS FEN Study List	L	31 May 2007	No NHA survey	7.3	H 626 350	Undesignated site	۵
002902	AGHACLOGHAN FEN	Original NPWS FEN Study List	-	24 May 2007	No NHA survey	5.1	H 802 089	Undesignated site	ပ
002904	AGHNAMULLEN FEN	Original NPWS FEN Study List	-	23 May 2007	No NHA survey	8.2	H 684 172	Undesignated site	в
001780	ALLAGESH LOUGH	Finn/Lackey Report	-	9 June 2007	NPWS Ranger Survey only	5.5	H 590 346	Undesignated site	ш
001836	ANNAGHEANE LOUGH NHA	Finn/Lackey Report	2	30 May 2007	NHA Survey completed	12.3	H 469 181	cNHA pNHA	ţ
MFS-03	ARDKIRK FEN	Heritage Officer 2007	-	5 June 2007	No NHA survey	8.4	H 872 144	Undesignated site	U
MFS-06	BOCKS UPPER	Air Photo/survey discovery	+	8 June 2007	No NHA survey	11.1	H 794 091	Undesignated site	ပ
002901	CORAVILLA - RAKEEN FEN	Original NPWS FEN Study List	-	23 May 2007	No NHA survey	12.9	H 648 241	Undesignated site	÷
MFS-01	CORNAGLARE	Air Photo/survey discovery	1	28 May 2007	No NHA survey	18.8	H 648 300	Undesignated site	в
MFS-07	CRINKILL LOUGH	BSBI Alan Hill Site	1	10 June 2006	No NHA survey	22.1	H 767 195	Undesignated site	В
MFS-04	CRUMLIN LOUGH	Air Photo/survey discovery	1	28 May 2007	No NHA survey	5.1	H 642 330	Undesignated site	ċ
MFS-02	DRUM LOUGH	Heritage Officer 2007	3	28 May 2007	No NHA survey	42.7	H 561 183	Undesignated site	в
001841	DRUMCOR LOUGH NHA	Finn/Lackey Report		30 May 2007	Unsurveyed	32.7	H 472 171	cNHA pNHA	+ C
002732	DRUMGALLAN BOG	Original NPWS FEN Study List		27 May 2007	No NHA survey	34.3	H 810 283	cNHA	В
002903	DUNAREE FEN	Original NPWS FEN Study List	1	24 May 2007	No NHA survey	3.2	H 794 104	Undesignated site	ш
001603	ESHBRACK BOG NHA	Original NPWS FEN Study List	10	6 June 2007	NHA Survey completed	1183	H 550 430	NHA PNHA	A
002898	GRAFFAGH AND CORINSHIGO FEN	Original NPWS FEN Study List	2	11 June 2006	No NHA survey	75.7	H 590 331	Undesignated site	۵
002897	GREAGHGLAS FEN	Original NPWS FEN Study List	1	22 May 2007	No NHA survey	8.9	H 701 307	Undesignated site	÷
MFS-08	ΚΙΓΓΥ ΟΟΟΓΥ ΓΟυΟΕΗ	BSBI Alan Hill Site	1	11 June 2006	No NHA survey	6.4	H 794 091	Undesignated site	в
001782	KILLYHOMAN MARSH NHA	Original NPWS FEN Study List	1		NHA Survey completed	6.1	H 630 523	pNHA cNHA	ш
002755	KILLYNEILL FEN	Original NPWS FEN Study List	4	25 May 2007	No NHA survey	80.9	H 730 354	Undesignated site	В
001839	ΚΙΓΓΑΛΙΓΓΑ ΓΟΛΘΗ ΝΗΑ	Original NPWS FEN Study List	٢	9 June 2007	NHA Survey completed	3.1	H 551 334	cNHA pNHA	В
002899	KILNACLAY FEN	Original NPWS FEN Study List	2	28 May 2007	No NHA survey	7.7	H 632 303	Undesignated site	۵
001786	KILROOSKY LOUGH CLUSTER SAC	Original NPWS FEN Study List		29 May 2007	NHA Survey completed	58	H 490 275	cSAC pNHA	A
001835	LISABUCK LOUGH NHA	Finn/Lackey Report	2	30 May 2007	NHA Survey completed	17	H 503 230	cNHA pNHA	в
001781	LISARILLY BOG NHA	Original NPWS FEN Study List	£-	28 May 2007	NPWS Ranger Survey only	9.9	H 581 269	cNHA pNHA	ш
002911	LISINISKY MARSH	Original NPWS FEN Study List	-	8 June 2007	No NHA survey	22.4	H 706 096	Undesignated site	÷
001840	LISLANNAN BOG NHA	Original NPWS FEN Study List		29 May 2007	No NHA survey	14.9	H 548 303	cNHA pNHA	В
002893	LISNALEE FEN	Original NPWS FEN Study List	4	22 May 2007	No NHA survey	8.6	H 690 281	Undesignated site	ш
002896	LISQUIGNY (CORLONGFORD) FEN	Original NPWS FEN Study List	-	25 May 2007	No NHA survey	15.7	H 732 267	Undesignated site	D

Monaghan Fen Survey 2007 Appendix 3A. List of fens in County Monaghan surveyed in detail with site source, survey status and conservation designation prior to survey on the Monaghan Fen Survey 2007.

als
Tota

Totals			69			1,919			
Site Code	Site Name	Site Source	Number of discrete sub sites for survey	Date Monaghan Fen Survey Completed	Survey Status prior to Monaghan Fen Survey	Estimated total site area	Grid Reference	Existing Conservation Designations	MFS Ranking after Survey
001607	LOUGH SMILEY NHA	Original NPWS FEN Study List	4	27 May 2007	NHA Survey completed	75.7	H 82 21	cNHA pNHA	а
MFS-05	MORGANS LOUGH	Air Photo/survey discovery	٢	29 May 2007	No NHA survey	5.1	H 502 279	Undesignated site	÷
002531	MOYLAN LOUGH	Original NPWS FEN Study List	1	24 May 2007	No NHA survey	12.8	H 854 088	cNHA	A
001785	MULLAGHMORE LAKE (SOUTH) NHA	Original NPWS FEN Study List	1	31 May 2007	NPWS Ranger Survey only	16.1	H 624 381	pNHA cNHA	B
001837	MULLAGLASSAN LOUGH NHA	Original NPWS FEN Study List	1	9 June 2007	NHA Survey completed	5.8	H 573 327	pNHA cNHA	8
002077	NAFARTY FEN NHA	Original NPWS FEN Study List	٢	5 June 2007	NPWS Ranger Survey only	3.6	H 837 045	cNHA pNHA	۵
002614	PRIESTFIELD LOUGH	Original NPWS FEN Study List	٢	31 May 2007	No NHA survey	7.2	H 650 310	ASI cNHA	÷
001606	RAFINNY LOUGH NHA	Original NPWS FEN Study List	1	23 May 2007	NPWS Ranger Survey only	5.2	H 618 263	cNHA pNHA	B
001784	ROSEFIELD LAKE AND WOODLAND NHA	Original NPWS FEN Study List	1	31 May 2007	NPWS Ranger Survey only	16.8	H 632 337	cNHA pNHA	B
002892	SHEETRIM FEN	Original NPWS FEN Study List	1	22 May 2007	No NHA survey	6.3	H 679 315	Undesignated site	ပ
002894	TIRAGARVAN FEN	Original NPWS FEN Study List	1	5 June 2007	No NHA survey	8.3	H 819 048	Undesignated site	D
002895	TOSSY CROSS FEN	Original NPWS FEN Study List	1	24 May 2007	No NHA survey	8.1	H 769 154	Undesignated site	ш

Monaghan Fen Survey 2007 Appendix 3B. List of fens in County Monaghan surveyed in detail in 2007 with predicted fen types and area, and fen types and total area confirmed following the Monaghan Fen Survey.

		E.C.		Total Fen Area:	190	Total Fen Area: Confirmed Fen	95.58 Fen	MFS
Site Code	Site Name	Estimated total site	Grid Reference	Predicted Fen type(s) present	Estimated Fen Area	type(s) after Monaghan Fen	Area after	Ranking after
Coue		area	Kelelence	present	I ell'Alea	Survey 2007	MFS	Survey
002900	AGHABOY TOWNLAND FEN	7.3	H 620 350	Poor fen PF2	4	No fen on site	0	D
002902	AGHACLOGHAN	5.1	H 807 087	Poor fen PF2	0	Transition Mire 7140 PF3 Poor fen PF2		С
002904	AGHNAMULLEN	8.2	H 682 172	Poor fen PF2	0	Transition Mire 7140	1.15	В
001780	ALLAGESH LOUGH NHA	5.5	H 590 346	No fen predicted	n/a	PF3 No fen on site	2.14 0	E
001836	ANNAGHEANE LOUGH NHA	12.3	H 469 181	No fen predicted	n/a	Transition Mire 7140 PF3	0.21	C+
MFS-03	ARDKIRK FEN	8.4	H 872 144	New site - no predicted		No fen on site		С
MFS-06	BOCKS UPPER	11.1	H 794 091	fen type New site - no predicted fen type	n/a n/a	Transition Mire 7140 PF3	0 4.15	С
002901	CORAVILLA - RAKEEN	12.9	H 660 245	Poor fen PF2 Transition Mire 7140	30	Transition Mire 7140 PF3		C+
MFS-01	CORNAGLARE	18.8	H 648 300	PF3 New site - no predicted		Transition Mire 7140	3.94	В
MFS-07	CRINKILL LOUGH	22.1	H 767 195	fen type	n/a	PF3 Transition Mire 7140	1.05	В
				New site - no predicted fen type	n/a	PF3 Poor fen PF2	3.59	_
MFS-04	CRUMLIN LOUGH	5.1	H 642 330	New site - no predicted fen type	n/a	Transition Mire 7140 PF3	1.93	C+
MFS-02	DRUM LOUGH	42.7	H 561 183	New site - no predicted fen type	n/a	No fen on site	0	В
001841	DRUMCOR LOUGH NHA	32.7	H 472 171	No fen predicted	n/a	No fen on site	0	C+
002732	DRUMGALLAN BOG	34.3	H 813 283	Transition Mire 7140 PF3	20	Transition Mire 7140 PF3	11.88	В
002903	DUNAREE	3.2	H 795 105	Poor fen PF2	0	Transition Mire 7140 PF3	0.48	E
001603	ESHBRACK BOG NHA	1183	H 550 430	Transition Mire 7140 PF3 Poor fen PF2	39.3	Alkaline fen 7230 PF1 Transition Mire 7140 PF3 Poor fen PF2	4.1	A
002898	GRAFFAGH AND CORINSHIGO	75.7	H 595 338	Transition Mire 7140 PF3 Poor fen PF2	15	Site survey incomplete	n/a	D
002897	GREAGHGLAS	8.9	H 705 307	Poor fen PF2	0	No fen on site	0	C+
MFS-08	KILLYCOOLY LOUGH	6.4	H 794 091	New site - no predicted fen type	n/a	Transition Mire 7140 PF3	1.5	В
001782	KILLYHOMAN MARSH NHA	6.1	H 630 523	Transition Mire 7140 PF3	0	No fen on site	0	E
002755	KILLYNEILL FEN	80.9	H 730 354	Transition Mire 7140 PF3 Poor fen PF2	40	Transition Mire 7140 PF3 Poor fen PF2	31.45	В
001839	KILLYVILLY LOUGH NHA	3.1	H 551 334	Cladium fen 7210 PF1	0.4	Cladium fen 7210 PF1	0.24	В
002899	KILNACLAY FEN	7.7	H 635 305	Poor fen PF2	3	No fen on site	0	D
001786	KILROOSKY LOUGH CLUSTER SAC	58	H 490 275	Alkaline fen 7230 PF1 Cladium fen 7210 PF1 Transition Mire 7140 PF3	10	Alkaline fen 7230 PF1 Cladium fen 7210 PF1 Transition Mire 7140 PF3	1.27	A
001835	LISABUCK LOUGH NHA	17	H 503 230	No fen predicted	n/a	No fen on site	0	В
001781	LISARILLY BOG NHA	9.9	H 582 268	Transition Mire 7140 PF3	1	Poor fen PF2	1.48	В
002911	LISINISKY MARSH	22.4	H 706 096	Transition Mire 7140 PF3	0	Transition Mire 7140 PF3	4.23	C+
	LISLANNAN BOG NHA	14.9	H 549 303	Transition Mire 7140 PF3	7	Transition Mire 7140 PF3	5.48	В
001840					0	Transition Mire 7140		E
001840 002893	LISNALEE	8.6	H 689 277	Poor fen PF2	0	PF3 Poor fen PF2	2 27	
	LISQUIGNY	8.6 15.7	H 689 277 H 732 267	Poor fen PF2 Poor fen PF2	0	PF3 Poor fen PF2 Transition Mire 7140	2.27	D
002893 002896						PF3 Poor fen PF2 Transition Mire 7140 PF3 Transition Mire 7140	2.27 2.68 5.91	D
002893	LISQUIGNY (CORLONGFORD) FEN	15.7	H 732 267	Poor fen PF2	0	PF3 Poor fen PF2 Transition Mire 7140 PF3	2.68	

Monaghan Fen Survey 2007 Appendix 3B. List of fens in County Monaghan surveyed in detail in 2007 with predicted fen types and area, and fen types and total area confirmed following the Monaghan Fen Survey.

			U	Total Fen Area:	190	Total Fen Area:	95.58	
Site Code	Site Name	Estimated total site area	Grid Reference	Predicted Fen type(s) present	Estimated Fen Area	Confirmed Fen type(s) after Monaghan Fen Survey 2007	Fen Area after MFS	MFS Ranking after Survey
001785	MULLAGHMORE LAKE (SOUTH) NHA	16.1	H 624 381	Transition Mire 7140 PF3	0	No fen on site	0	В
001837	MULLAGLASSAN LOUGH NHA	5.8	H 573 327	Alkaline fen 7230 PF1	0.5	Transition Mire 7140 PF3	0.44	В
002077	NAFARTY FEN NHA	3.6	H 833 045	Alkaline fen 7230 PF1	3	No fen present	0	D
002614	PRIESTFIELD LOUGH	7.2	H 650 310	Transition Mire 7140 PF3	1.5	No fen present	0	C+
001606	RAFINNY LOUGH NHA	5.2	H 620 265	Poor fen PF2	0.5	Transition Mire 7140 PF3	1.08	В
001784	ROSEFIELD LAKE AND WOODLAND NHA	16.8	H 633 337	Cladium fen 7210 PF1	0.2	No fen present	0	В
002892	SHEETRIM	6.3	H 679 315	Poor fen PF2 Transition Mire 7140 PF3	11	No fen present	0	С
002894	TIRAGARVAN	8.3	H 815 045	Alkaline fen 7230 PF1 Poor fen PF2	0	No fen present	0	D
002895	TOSSY CROSS	8.1	H 769 154	Transition Mire 7140 PF3	2	No fen present	0	E

2007
Survey
Fen
onaghan
Ž

Appendix 4. List of sites in County Monaghan surveyed in brief in 2007 to assess their potential fen interest.

Site Name	Grid Reference	Date Site Surveyed	Site comments/habitat notes	Conservation Designations
AGHABOY LAKE	H 590 346	9 June 2007	Small inter drumlin lake with fringing <i>Typha latifolia</i> edge with emergent <i>Nuphar lutea</i> . Edge of lake heavily grazed and grading into wet pasture and then improved grassland. On northern side of the lake a relatively large flat marginal zone is dominated by wet <i>Juncus</i> <i>effusus</i> rich grassland. Some infill has been dumped on north-eastern shore. No fen zone present around lake.	Undesignated site
DRUMSNAT LOUGH	H 611 308	9 June 2007	Step sided inter drumlin lake site with fringing <i>Phragmites australis</i> , <i>Schoenoplectus lacustris</i> with <i>Sparganium erectum. Nuphar lutea</i> emergent in lake. Willow scrub at eastern end. Lake edge has well developed recreational fishing stands (10 or more in number). No fen interest at the site.	None known
KILCORRAN LOUGH	H 560 334	9 June 2007	Large inter drumlin lake which is used as a water supply. Recently constructed large pump house at the north-western end of lake. Areas of eroding bare soil along the north-western shore. In other parts of the lake there is a narrow band of fringing reed vegetation with <i>Phragmites australis, Iris pseudacorus</i> and <i>Schoenoplectus lacustris.</i> Willow scrub fringes in parts. No fen zone present around lake.	AHN
DRUMBERAGH	H 802 098	8 June 2007	Cutover bog area with regenerating wetland community to the east of the road dominated by <i>Equisetum fluviatile</i> and <i>Typha latifolia</i> marsh. No fen interest observed.	None known
SHANKILL LOUGH	H 729 086	8 June 2007	Small inter drumlin Lough surrounded by a wide dense stand of <i>Phragmites australis</i> which leaves only a small central area of open water, forming a near perfect circle. No fen interest observed.	None known
LOUGH BANE	H 739 095	8 June 2007	Inter drumlin lake site with <i>Typha latifolia</i> along lakeshore fringe. Area of wet Alder woodland occurs at the south western end of the lake leading down to lake from road. No fen interest observed.	None known
CORRACHARRA	H 715 092	8 June 2007	Regenerating wetland community on cutover bog dominated by wet scrub woodland with Salix cinerea and Salix aurita with extensive Filipendula ulmaria and Rubus fruticosus cover. No fen interest observed.	None known
LAUREL LOUGH	H 463 180	May 2007	Small inter-drumlin lake surrounded by improved grassland. No scraw vegetation was recorded and only a narrow band of emergent reed vegetation exists along the lake shore.	None known

2007
Survey
n Fen
aghar
Mon

Appendix 4. List of sites in County Monaghan surveyed in brief in 2007 to assess their potential fen interest.

Site Name	Grid Reference	Date Site	Site comments/habitat notes	Conservation
CORCONNELLY LOUGH	H 505 217	30 Mav 2007	Relatively large inter-drumlin lake surrounded by improved agricultural grassland which extends down to the lake shore, there was no scraw recorded along the lake shore. Douglas et al 1983 listed the site as a reservoir and a lake with scraw.	None I
CARRAGHMORE FEN	H 736 078	8 June 2007	Extensive area (approx. 4.1 ha) of quaking transition mire to the East of the road. The site contains some remnants of the original raised bog vegetation and wet Willow scrub areas. Site worthy of more detailed future fen survey.	None known
CORLOUGHAROE LOUGH	H 567 222		Inter-drumlin lake on eastern side of the road. The open water is dominated by the floating macrophyte <i>Nuphar lutea</i> . The site is surround by improved agricultural grassland which extends right down to the lake shore on all sides. There is no fen interest at the site.	None known
ЕМҮ LOUGH	H 69 44	11 June 2007	Large inter drumlin lake site with emergent <i>Eleocharis palustris</i> and many areas of the shore going directly into improved pasture. Other sections of lake wooded with Alder and <i>Salix</i> spp. There is no fen interest at the site.	NHA
KILLY LOUGH	H 63 42	11 June 2007	Inter drumlin lake with marsh area at the southern end, which was being infilled with soil and building rubble on the day of survey. Possibly for future use as car park. Eastern side of lake has steep sided drumlin edge, with only a narrow band of <i>Typha latifolia</i> and emergent <i>Equisetum fluviatile</i> zone. A number of areas have a rocky shore grading directly into pasture. At northern end of lake there is an extensive reed bed zone with scrub woodland further from the lake. There is no fen interest at the site.	None known
DERNAHAMSHA	H 575 348	11 June 2007	Reed fringed lake with central area of open water. Large <i>Typha latifolia</i> reed zone which grades into extensive marsh zone to the west. There is no fen interest at the site.	None known

Monaghan Fen Survey 2007 Appendix 5. List of sites worthy of survey submitted by Alan Hill (BSBI County Recorder) to the Monaghan Fen Survey 2007

Site Name	Grid Ref N	Grid ref E	10 km Grid Square	Site Interest	Survey Comments
Annagheane Lough	246800	318000	H41	Stratoites aloides	Surveyed on MFS 2007
Drumaveale Lough	247300	319600	H41	Hydrochaeris morsus ranae	
Clonoony Lough	244700	321700	H42		
Corvahan	245700	324100	H42		
Clonkeen Lough (south side)	250000	324000	H52	Parnassia palustris	
Aghafin Lough	252300	329300	H52		
East of Aghafin Lough	253800	329500	H52	Epipactis palustris	
Roosky Lough	257163	326786	H52		
Annagose Lough	258100	325700	H52		
Colonkirk Bog	251700	329700	H52		
Bishops Lough	252600	326300	H52		
Creevaghy Bog/Fen	252500	328000	H52		
Lough Ooney	255800	329600	H52		
Rathkeevan Lough	253700	330200	H53		
Drumgoost Lough	257500	333700	H53		
Mont Louise Lough	258600	333600	H53		Surveyed on MFS 2007, under Graffagh & Corinshigo
Aghaboy Lake	259200	335100	H53	Parnassia palustris	Fen Assessment Undertaken MFS 2007
Dartry	260600	318000	H61	Carex elongata	
Corravoo Lough	265400	318300	H61		
Faltagh	263600	323100	H62		
Kiltubrid Lough	264700	329700	H62	Hypericum elodes	Surveyed on MFS 2007, under Cornaglare
Drumsnat Lough	261100	330800	H63		Fen Assessment Undertaken MFS 2007
Annayalty	261900	334100	H63		
Killy Lough	263000	342000	H64		Fen Assessment Undertaken MFS 2007
Killycooly Lough	269700	345000	H64		Surveyed on MFS 2007
Drumcunnion Lough	270700	309400	H70		Surveyed on MFS 2007, under Lisinisky
Corlea (North of road)	277200	302200	H70	Hypericum elodes	
Black Lough	269671	311639	H61	Typha latifolia	Within Black & Derrygoony Loughs NHA 1596; reference to possible transition mire in NHA description. Possibly confused with site below by Hill
Black Lough	270800	310300	H71		Within Loughbawn House Loughs NHA 1595;no reference to fen in NHA description
Shantonagh Lough	275600	310900	H71	Salix repens	
Crinkill Lough	276700	319500	H71	Alkaline fen/acid fen	Surveyed on MFS 2007
Killyboley Lough	272400	339400	H73		
Sillis Lough	273400	339700	H73		
Drumganny Lough	288700	308500	H80		
Lough Aphuca	283100	305900	H80		
Drumharrif Lough	285300	310700	H81		
Muckno Mill Lough	284200	322600	H92		
Carrickashane Lough	280300	324200	H82		
Mount Matthews	294000	308400	H90		
Rahans Lough	283100	297800	H89	Stellaria palustris	

Appendix 6: Monaghan Fen Survey 2007 Vegetation Classification Table

Table 6A: Relevé data sorted and classified according to the Braun Blanquet approach to vegetation classification.

Table 6B: Relevé data sorted and arranged according to TWINSPAN Analysis.

Table 6C: Synoptic table for relevé data collected during the Monaghan Fen Survey.

Table 6D: Species name abbreviations with full Latin and English names. Species Latin nomenclature for vascular plants and bryophytes, were made using Webb, Scannell & Doogue (1996); Watson (1981); Smith (1980); Jermy et al (1982), while nomenclature for species follows that provided National Biodiversity Network Gateway website at http://www.searchnbn.net. Species English nomenclature follows Scannell & Synnott (1987).

																-			
	54 HMSH MSH MSH MSH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ereaghglas											e	-		\square	C	4	4
	683 MSH MSH MSH MSH MSH 683 100 00 00 00 00 00 00 00 00 00 00 00 00	/atarty	2017-R1			e	4						e		HI.				4
	F PF P P 210 P 210	Eshbrack	1603(4A)-R1		+														
	F PF PF P P P P P P P P P P P P P P P P	S Eshbrack				2	-										-		
	PF PF PF PF P P P PF PF PF PF PF PF PF P	S Eshbrack				-					2				-				
	1 49 2 5.8 0 0 175 0 0 175 0 0 0 175 0 0 0 175 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 35 0 35	- Lisnalee	5893-82																
	47 48 PF PF PF 4.7 47. 4.22 200 200 200 200 200 200 200 200 200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 50 50 50 50 50 50 50 50 50 50 50	, Eshbrack	1603(5)-R1		+														
	PF FF PF FF PF FF PF PF<	Eshbrack	1603(5)-R2		+		~										-	-	4
	PF P	Crinkill	MFS07-R3				-							+				+	_
	5 5 5 5 7 4 4 4 4 4 4 4 4 4 4	Sciphiack					_		+	4				+ 0 +				-	
	PF P7	Killyneill	52222-B4				-		-	-				+ () +				- T	
	6.4 5. 6.4 5. 6.4 5. 7 10 10 10 10 10 10 10 10 10 10 10 10 10	Vilinsij 6	1781-R1		+	++	+	-					N						
	6 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Killyneill							+				+	-	- +				
	6.84 6.6 6.84 6.6 6.84 6.6 6.0 2210 2210 2210 2210 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Annagheane	1836-R1										+					-	
	39 5 6.3 6 6.3 6 7 200 × 5 75 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 37 37 37	A-silia-R	2901-R1																
	38 6.15 6 6.15 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1000 1100 1100 1200 12	Crumgallan	5732-R2		+														
	TTM TTM N/A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	n Drumgallan	5732-R1														Ħ		
	36 5.52 5.52 7 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Eshbrack	1603(2)-R1					+						2			2 12	4	
	6:2 5: 6:2 5: 110 2: 110 2: 11	Drumgallan			+		+											+	4
	6.0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Dunaree	5203-B1		+	+								+			0 0	5	
	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Crinkill															,	+ -	
	32 6.28 6.28 6.28 7 7 60 60 60 60 0 0 0 0 0 0 0 0 0 0 0 0	Crumin	MFS04-R2		+			+									- c	4	
	31 TTM 1 6.23 6.23 6.23 6.23 6.20 0 0 0 0 0 0 0 0 0 0 0 0 0	Crumlin	MFS04-R1														c	4 0	7
	NNA 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	c Eshbrack			Ħ		.										е т	- ~	
	22 6.38 1 7 195 2 200 2 200 2 200 2 0 0 0 0 0 0 0 0 3 3 3 3 7 1 5 0 0 0 3 3 5 0 0 0 0 0 0 0 0 0 3 3 5 0 0 0 1 195 2 1 0 5 3 8 1 195 2 1 0 5 3 8 1 195 2 1 1 10 1 1 10 1 1 10 10 10 10 10 10 10	Наргаск	1603(9)-比1			-											4 4	t +	
	28 6.27 6.27 7 6.00 60 60 60 60 60 0 0 0 220 5 220 0 0 0 0 0 0 0 0 0 0 0	, Lisinisky	5911-K2		Ħ									~			+ 0	n ∩ +	
	27 TTM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Smiley	⁰ ເ <u>ສ</u> -209ເ					-	+					+	+ •	-	2	+	
	26 6.94 6.94 0 2200 2200 100 100 100 100 100 100 100	Smiley	28-7031													-	e		
	25 205 0 0 50 50 50 0 0 0 0 0 0 0 205 50 0 0 205 205	b Drumgallan	5732-R3														2	+	+
	22 52 22 22 22 22 22 22 22 25 25	γngiupsi ζ	5896-R1										2	~					
	×200 5.4 5.0 50 50 0 0 0 0 0 0 0 0 0 0 0 0 0	γngiupsi 🖞	5896-R2										+	+		-			
	5 22 1 120 1 100 1 1	eelsnaid 6	5893-R1											~				+	
	22 T TM 6.3 90 90 90 90 90 90 90 90 90 90	, Kafinny	1606-R1													-	1		
	Z0 TM 6.4 6.4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Cornaglare	MFS01-R1				-				+			~	, c	7	-		
	13 TTM 13 14 15 10 10 10 10 10 10 10 10 10 10	, Lisinisky	2911-RI			2	+						4	+ -			-		
	18 17 18 10 10 10 10 10 10 10 10 10 10	5 Bocks						-					4 0		. c	7			
	Contraction 11 TM	Aghnamullen											~ ~			+	e		
	16 TM 56.3 7 7 500 0 2000 0 5500 0 55000 25000 25000 25000 25000 25000 250000 250000 2500000000	Aghacloghan											e			+	2		
	15 TM 36.75 36.75 7 7 7 7 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Killyneill											4	~ + +	+ 10				
	TH 12 13 14 15 TM TM TM TM TM TM TM <td>Killyneill</td> <td></td> <td></td> <td>+</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4</td> <td>+</td> <td>0 0</td> <td></td> <td></td> <td></td> <td></td>	Killyneill			+								4	+	0 0				
	1 TM 1 TM 1 G85 -15 -15 -15 -200 00 280 00 0 00 0 00 0 00 95 00 0 1 44 1 45	o Morgans											-	+ ~ +					
	A TM TM TM TM TM TM TM TM TM TM TM TM TM T	nsnnsla g			+									-	. 2				
	10 11 TM TM TM TM TJ 7.0 7.1 7.0 7.1 7.0 9 9 40 >205 205 205 206 0 0 0 0 0 0 100 100 100 100 100 0 0 0 0 5 5 5 5 5 W1 W2 260 260 260 25 25 5 5 2	S Killycooly											+ 2	+ 1 2					
	9 10 TTM TM -6.0.6 7.1 -6.0.6 7.1 -8.0.0 10 -0.0 20 -0.0 0 -0.0 0 -1.0 0 -1.0 0 -1.0 -1.0 -1.0 0 -1.0 -1.0 0 -1.0 -1.0 0 -1.0 0 -0 0 -0 0 -0 0 -0 0 -0 0 -0 0 -0 0	Killycooly Mullaglassan			+	+	+			+			4 +					+	
	TIM TM	Aghnamullen			+		N +						4		-	V			
	AF T1 AF T1 7.1 6 7.1 7 7.1 6 7.1 7 7.1 6 7.1 7 7.1 7 7.	Kilroosky									+			+	Ĥ				-
	6 AF	Kilroosky			\square	- ·	F 0	+			0								H
	AF A	Kilroosky				-	2 2		+		0 0							-	
	1 5 1 5 AF AF AF 646 7.8 6.046 7.3 90 7.9 P P P 7.8 200 200 200 200 200 200 200 200 200 0 0 0 0 100 100 80 90 100 0 0 0 0 0 0 100 200 200 200 200 200 0 2 4 2 2 4 5 2 4 5 2 3 3 5 3 5 5 5 4 5 5 5 5 5 5 5 5 5	Езиргаск			\square	e	+ ~	+ ~ +	+ -	· + ·	-		5	+	-			+	
	CF 2000 CF 2000 CF 2000 CF 2000 CF 2000 000 000 000 000 000 000 000 000 0	S Kilroosky				m		+			4 + +		+		+				
	CF 0 CF 2 CF 2	, Kilroosky	2 ² אורר - 1289-84			m + ·	-	-		+ +			+						
	53 53 53 53 53 53 53 53	s Kiliyvilly	1839-R1			~ ~ ·		+	3		-	0					,		
			No. Occurrences		ae	12	8 0	0 m m	۳ ۲	0.4	4 4 M	ianae	17	11 8 19	6 - 0		· · ·	13	ы
101	NNNN Phatematical Second Secon	Ime	ber ber		Ilian		oa					davalliana				orac	5		\uparrow
y 2C ble	Relevé Table No. Habitat type avater depth Soli type Peat depth cm Total cover % Trees % Herb/Grass/Sedge % Bare Peat/Soli % Bare Peat/Soli % Bare Peat/Soli % Bare Peat/Soli % Herbi Herb layer cm Herbi Herb layer cm Herbi Herb layer cm Herbi Herb layer cm Herbi Kerer Sample number Twinspan Order	Site name	opp. rei reieve Relevé Number		dava		locar	s			sus	lia dá		F		Janteum Caricetalia niorae			
irve é Ta	/é Té Haba wat eat d otal isss/5 ryop Peat Peat Peat Peat ers s inspe	S C	spp. re Relevé	Je	talia	alis	<u>). 0ec</u>	nden:	cum		ris	Caricetalia	e.	tratur	i e	iceta	2000	nula	
n Su telev	Relev N/Grant Bare Bare Cort Cort Twith Twith	i G	Re	l nan	Iricet	austr.	la sst	i sple ris	flora	Istre	<u>palus re</u>	. Cari	ra Ilmar	n ros osa	-cucu	Carl		flami itellat	_
h Fe A: R	Relevé Table No. Habitat type Mater depth Soit type Peat depth can Total cover % Trees % Herb/Grass/Sedge % Herb/Grass/Sedge % Bare Peat/Soil % Bare Peat/Soil % Bare Peat/Soil % Height Herb layer can Staguared) Height Herb layer can Height Herb layer can Herb Can a can be a can be a can herb can herb can be a can herb can herb can be a can herb can herb can be a can herb can herb can be a can herb can herb can be a can herb c			is ful	л - С	n ma	viridu	mium oulica	ium n	nedia 1 palu	laris p flacca	nire -	diand Jula L	nniur acett	s flos.	oire -	curta	culus culus	ŭ
ghai dix 6				Species full name	e Fer	Cladium mariscus Phragmites australis	Carex panicea Carex viridula ssp. oedocarpa	Campylium stellatum Hylocomium splendens Carex pulicaris	Ctenidium molluscum	Briza media Cirsium palustre	Drepanociadus revolvens Pedicularis palustris Carex flacca	ion n	Carex diandra Filipendula ulmaria	Plagiomnium rostratum Rumex acetosa Holcus lanatus	Lychnis flos-cuculi Equisetum palustre	sition mire - Caricet	arex (Ranunculus flamm. Veronica scutellata	Lemna mino
Monaghan Fen Survey 2007 Appendix 6A: Relevé Table				GL	Sal	2						Transition mire -				- 2			
Σ¥				dmuN	Ā	43 122	35	203 32	193	15 42	120 25	Ļ	21	238 146 81	099 63	Ĭ	20	14	92

5897-FR1			-	- 0								-											ო +	-	-		-	1		-		-				+				2	6		_			
1603(4A)-R1			+		e	-				3		-			+	-					3		-		c	7										r.		-				-	-			+
1603(6)-R2					+						-	+	2 2	c	-	+	2	+			- +		2		c			+	2				.	-												+
1603(2)-R2			2							2	+ -	- +	4			+	2				+		2	-	¢	7			2		-						-					+				-
2893-R2					2					2	+	+ -	·	۲									+				-		4	+ က	+				-											-
1603(5)-R1					+					5	+	-	,	- 1	-								+	2		t 0		+ e																		H
1603(5)-R2												+	-			+								2	- 0	n –		3	+																	T
EA-TO2-R3				-						3		-	+		-	+		4			-					-		+	2		2									+					+	
KFS07-R2										4	1 2	-	+		-			+	-							е		- +																		
1603(4)-R1		2									-	- r	+		- 0	N		+					+		-			+	+ +	+ ~	+ 0	2													۲	
2755-R4		ы			2					2		2						4	-	~ ~	7		-	2	¢	7	c	5	+															+		
178-1871		٢			٢												1		5	+ (2			-	4	+ +		+	2			+ ~						+				1				
2755-R2		-	-	F	-	-					4 5	F	c	1				4	-	c	7		+	-	+		-		2	-	4	n												-		
1836-R1		ю		- 6		-		+															3	-		۲																				
2901-R1			¢	0	4		1																З	-	0 0	7	+		4	+					+									+		
2732-R2			+ -	F	4																		٢	2	c	7		+										+	+							
2732-R1					-																		-		٢	0		+																		
1603(2)-R1			T		e	T				4		-		+	T	T		T					2	e	+ ~	2	T		2		-	+														
5732-R4			+		4											T		T	ſ				2	2	+ -													+								
5903-K1			-	-	2			+							T	T		T	ľ		+		-	-	T		,	7		2																
NFS07-R1			¢	0 0	о С		- +	+															-		-					-	-			2		2										
MFS04-R2		2	- 0	4	2	-		+										T					С	2	٣	2		+	•									-								2
MFS04-R1			+ 0	2 0	2	+									T								2		+ <	ŧ																				
1603(9)-R2			¢	4	2		2						-		-								٢	3	-	з		2			-						+									
18-(9)5031			,	- +	-	-	1											2					2	2							+			+												
2911-R2		-	~ ~	4 6	+	+	1	+										2					2	-	- ,	2		+ +		-						+										-
18-7081		-	7	+ +									-										-	2	+		c	4																		
2A-7081		5	+ •	- 6	+ +							1												2	1		1	1	+						+											
2732-R3		e	~	+ +	-		1	-															2	2	+	-	c	0	4	+			-							+						
19682		2	*	4	-	-												+					2	-	2		-																			
2896-R2		4	m +	- ~	+ +	-																	2	-	-	+	+		•	-																
1893-R1		4	¢	4 0		-												+					2	5	~		+			+		+			-	-								+		
19091		S		~	1 m		+	1															2	2	-	-		1	-																	
NFS01-R1		e	_	+	+	c	4 +				+				-								-	-	٢	o –	c	2	+	•	-		+				+									
2911-R1		2		-			1	+																	- "		+ ·	+	+	•	-					-			-							
NFS06-R1		4	~		-																		+	ι m ·	- "	o –		-	•	-																
2904-R1		4		-			+	-			2							+					2	ι _Ο Ι		-		2	-	4	+		+													+
2902-81		4	-		2	+ •	-	1				+						c	4					-	- 0		+		4	+				+								+				
2755-R3		5	_	-	+		+ +															_	-	-					-	-			_		_			-				-		_		
2755-R1		5	+	-			-											+					+		- ~		-		-			-						+		_		-				
WES05-R1		2	¢	+		~	+	++															-	++	4	-	~			-		+	-		-	+	_	_				_				
1840-61	$\left \right $	5	-	× +		-	+	+ +				-			-			-					2	5			-		+ +	+ +		+	-					-		+		-				_
1840-R2		5	ہ + +	- 0		-	1		$\left \right $		\square				+	Ŧ	$\left \right $	+		+		+	-		+		+	2					+		+			+	$\left \right $		~	+	-			
1837-R1		_	+ -	ľ	2	Ŧ	1	+	$\left \right $		\square				+	Ŧ	$\left \right $	+		+		+	-	-	- c	4	+	-	\square	+			-			+		+	$\left \right $		-	+				+
1832 B1		-	- · ·	+	2	+					e				+								-	-				e			+															
MMUG-19821		2 2	_	v +	0	- 0	4								+			+	H				-		-		+			4								+				+	-			╇
MU2-19-9871			7	+		,						F		H	╉	F	H	╀	H	+			F	H	4	+	+ ·	2 +		4								Ŧ			H	Ŧ				
1786-82-אורר		4	_	-		╡		+							+	T		Ŧ		+				-	- 0		,	-					+					T		+		-				
1603(6)-R1		2		-	2	╡	٢				+	+ +	-	- +		N	+	Ŧ	F				2		+ +	+	+		+	2		N +														
MUS-29-9871		2	7	÷	+	c	7		f	e					T			T				t		Ħ	+ 0	v	+ ·	+					T						Ħ	T	Ħ					
1286-81-אורר		ო	T	ſ		T		+		leta	2							T					ſ		T			-	2																	
1839-R1		2	T	ſ		T				hzer	3							T					ſ		T		+		2									+								
No. Occurrences		34	24	22	39	13	16	9 10	Ħ	Poor Fen - Caricetalia nigrae to Scheuc <mark>hzerletalia</mark> 221 Sphagnum fallax	11 8	13 0	9	, r	-	4 0	4	10	2	01	2	T	42	38	32	19	19	19	18	<u>- 1</u> 0	0 -	00	en er	n n	с <i>т</i>	4 M	e c	n n	2	N M	5	m 0	6	7 7	2	2
ber	cies		T			T			0	0.50					T	T				T					T												(T				T				T
Relevé Number	Spec	Calliergonella cuspidata						olia		rae t		Ę	۳					e	E E									E		Practitytirectum invutate Rhytidiadelphus squarrosus Cicuta virosa			E				folius	Potamogeton natans Dactvlorhiza spp.	٤	En						
levé	teral	spidat	aris	L'a				Epilobium palustre Salix cinerea ssp oleifolia		a nig		Anthoxanthum odoratum	Sphagnum subsecundum Sphagnum palustre	nune		olia		Juncus effusus Sebadorum soriarrosrum	capillifolium	tens	Sphagnum cuspidatum		e	s	nsis iata	s ala	S	Eriopnorum angustirolium Carex nigra	Succisa pratensis Brachythecium rivulare	squar		E2	Rhizomnium punctatum Dactviorhiza maculata	ris	ш		ygoni	ans	Bryum pseudotriquetrum	Eurhynchium praelongum Betula pubescens		lia	Ξ		s	a
Re	- Ger	la cus	ctro.	on to	ita	lia ation	stris	alusti a ssp		etall. allax	ulea ecta	m oc	subse	COMI	ata	<u>pvllif</u> c	a	SUS	capilli	subnitens	cuspic	0	luviat	ilustr.	brate.	ulatu:	vestr	angu	tensis	sinds	ŝ	nd w	n pun	alust	bscur	9	lod u	I SDD.	dotric	n prae	ha	sectur undific	irsutu	SUSC	pestri.	opae lingu.
	nire .	gonel	cotyle	is sto	rostra	latifo.	palus	um p. inere¿		Dum f	a caer	anthu	, unu	Shum	echin.	la ser	limos.	effu:	unu c			Shar	tum f.	illa pe	nthes	artic	ca syl	nigra	a prai	iadelt	alust	urita	<u>nniur</u>	aris p	um o	tis lax	ogeto	ogetc orhiza	bsen	pubes	disticha	a rotu	4 mn	<u>etrali:</u> Jligino	camp	zulus
	Transition mire	allier	Hydrocotyle vulg	Admostis stolonifera	Carex rostrata	Typha latifolia	Caltha palustris	Epilobium palustre Salix cinerea ssp o		Fen - Caricetalia Sphagnum fallax	Molinia caerulea	nthox	Sphagnum subsecul Sphagnum paliistre	Polytrichum commune	Carex echinata	Urepis paludosa Polvdala serpvilifolia	Carex limosa	uncus anadr	Sphagnum	Sphagnum	phagr	Companion Species	Equisetum fluviatile	Potentilla palustris	Manyanthes trifoliata	Juncus articulatus	Angelica sylvestris	Eriopnorum Carex nigra	Succisa pratensis	Rhytidiadelpt Ciciuta virosa	Viola palustris	Soleropodium purum Salix aurita	Rhizomnium punctatur Dactvlorhiza maculata	Eleocharis palustris	Epilobium obscurum	Myosotis laxa	otam	actvlc	Lyum	<u>Eurhyn</u> Betula	arex	Cirsium dissectum Drosera rotundifolia	Epilobium hirsutum	Erica tetralix Lotus uliginosus	Luzula campestris	<u>anun</u>
	1 21									1 SI			0 v v										-																						7 LL	100 Lycopus europaeus 142 Ranunculus lingua
	Ļ	186	82	1	33	167	2 8	59 150	Ċ	221 221	139	008	228	13	24	12	28	50	241	227	219	C	62	140	101	088	001	000 29	163	213	179	211	212 45	54	58	106	13	23	183	12	23	41	57	65 096	097	1C 14

18-7e82												1										T																												
18-7702											t						t						t				1	t	t					t						T	t		H		-	-	-	-	-	۲
18-(A4)E031																							t																							+		F		
2月-(8)5091			_	+		+	_					-			-		+					+	+					+	+			-	2							+	+	+	+	+	-	-	+	H	+	-
	_										_	-											4									_					-			4		4		_	_	_		H	_	
1603(2)-R2																							4																	+								Ш	4	
2893-R2											+																																							
1603(5)-R1																																																		
1603(5)-R2																																																		
EA-702-R3																																								T	T	T								
28-702-R2							+					-							-																					+	T	t				+				
1603(4)5031					-	+	-															4	+	+			+				_						-				+				-		+	H	+	-
	+				-	-	_					-										-	+													-				+	+	+		-	_	_	\vdash	\vdash	4	_
2755-R4																							4																	4		4						H		
1781-R1																							4																									Ц		
2755-R2																+									+										+															
1836-R1																																																		
2901-B1					÷																																													
2732-R2	+	e	+	1	1	1	1										+											t	+					2							T									
13-2672	_	5		+	1	+			+	+		╞					+					+						╈	+											╈		╈	H		t	┢	H	H		
	-	-	_	+		+	_	-		-		-					+				_	+	-					+	+										-	+	+	-			_	_			_	
1603(2)-R1									1			2																																						+
2732-R4																															+					+														
2903-R1	T			T	Ţ	T	1	T	Ţ	T	Γ	+			Ţ	T	T				T	T					T	T	T										T										T	Ĵ
18-702-R1					1				I	T	T		+		+	T						T						-							ſ					T	t	F		1		T			ſ	J
MFS04-R2		F			1	+					F	F						F				Ŧ	F	F				ł							F					Ŧ	f	f				f			+	f
				+	+	+	-										+					+						+	+														\square		+		\square	H		
MFS04-R1	_																						4													_	-			+					_	_			-	
1603(9)-당5	_																						4																	°	4	1			4	4			_	
1603(9)-R1																																																		
2911-R2	+																															+																		
18-7081																										+																								
८४-२०७१																																								T										٦
5732-R3			+														,										+							1						T		t				+			+	
1月-865	+		_		+		-			-	-	+				-	+					+	+	-				+	+			-		-			-			+								H	-	-
	-				-		_				-	-									-	+	+				+									-				+		+		+	-	-	\vdash	\vdash	+	_
2896-R2											_												4																	_								\vdash		
18-5893-R1																							4							-																		Ц		
18-9091																																																		
NFS01-R1																				٢																														
2911-R1	+																																				-	+												
NFS06-R1																							+																											۲
2904-尺1				+		+					-	+					+					+	+					+	+			-					-			+		╈				+		H	+	-
	+		+	+	-	+	-					+					+					+	+				+	+	+					+						+		+		+	-	+	\vdash	\vdash	+	_
2902-R1				-	_	-	_														_	_	4				+	-				_								4	_	_				-		\vdash	4	
2755-R3																							4																											
19-2755-R1																																																		
NFS05-R1																																																		
1840-R1																																																		
1840-R2	T			1	1	1		1	+	1					1	1	t				1	T	t				1	T	t				t						1	T	t	t	+	Í	t	T		T	t	ļ
NFS08-R1				1	1	1		1	1	T	T					T	t				+	T	t					t	t				t	E					1		t	-		١		t			1	J
183-7681	+	F		+	1	+		1	+	+	t				-	+	Ŧ	F		H	1	+	€	E			+	+	Ŧ			+	+				-	H		+	╉	╉			1	Ŧ	H	H	+	
	4			1	1	1		1	1						1	1	I				4	1	4			4	1	1	I			4	1						1	4	1	+			4	-		H	4	
2904-R2	4									2						1							4					1												4	1	1			1	4			4	ļ
MMUG-19-9871					1				1									+					L					1													L	L				1				
MU2-19-9871																		+																										+						
1286-פַצ-אורר	T			T	T	T	1	T	T	T	Γ				T	T	Γ	+			Ţ	T					T	T	Γ			T	T						T		ſ			ſ	T				T	Ĵ
1603(6)-R1	T			-	1	+	+	÷	1		T						T					T	T					T	T					T					1	T	ſ	ſ		1	ſ	T			T	Ĵ
MU2-2A-9871	Ŧ			1	1	1	1	1	1	T	T			+		T	T					T	t					T	T					ſ	ľ				1	t	f	f	٢	+	+	+	F	ſ	1	ļ
1286-פוז-אורר	╋	F			1		1	1	1	+	t	F		+		+	Ŧ	F	F			╉	f	F			+	Ŧ	Ŧ					F	P				1	╋	f	f	۲	1	+	╉	H	H	╡	
	╇	F	1		1		1	+	1	1	F	F			1	1	_	F	F			1	╋	F			-								P				+	╇	╞	╞	H	1	4	╇	╞	H	4	9
1839-R1	2	2	2	2	2	2	2	- ·	_ ,	2		2	1	2	-			33	-	1				-	۲-	-					1	-			1			1						2	<mark>_</mark> ,			Ļ	,	-
¬ Occurrences	+			1	1	1		-	_	1	ľ				_		_		Ľ		_	ļ	Ļ				4	1	ľ	Ľ		\downarrow	ľ	ľ			Ľ		-	Ŧ	Ļ	Ļ	Ц	4	4	Ļ	Ĥ	\vdash	4	
Relevé Number																	άλυ																			r. re:														
NUN										s			ica				acny.		۲		ج				L						dii					e va	e			314	ŝ					sa				
evé			atus	jeri	s	ata		:	ides	oide		50	quat.				20.	s	atum		erur		E	es	unbe		s	, ea	2 g		tol		cus		unr.	orm	orph		en en	in al	CIIIa	.				spito	atius		s	e
ele	10Sa		mer	threc	epen.	dent	spp.	s.	ndro	<u>orpi</u>	n <u>or le</u>	la la	go at	ŝā	ntum	ris	1 SSD	naia	aginé	odes	trapt	orus	mor	Dioid	ssifré	alis	ustri	dina(anlat		berc	ticus	VCOC		ertia	essif	Jymc	e	<u>aure</u>	Juls	in spa	arine	US .	area	ata	caes inali	m elé	'nis	<u>itanu</u>	ulatê
R	<u>nir</u>		nglo	m sc	US LE	ea bi	ella	Inbu	n de	n SC	n rir	anin	anta	tinos	unda	ulga.	a nig	iza n	ž L	m elc	m te	<u>outifl</u> .	ia ne	scor	io m	regi	palı	<u>run</u>	ance	s	ton	quai	XO C	2	don r	cupr	ia pc	mala	virgé	unc 1	aur	anse	ebe	calc	icul.	<u>sia</u> offic	erur	tifor	nom	nnd
ц	a u								c=1 -	51.5								- ×				~ -																		77	5 0	n "	1 E I	(0)		<u> </u>	121	1 31		
2	<u>aria ul</u> ularia	a spr	us co	oziu	Incul	ocole	alozi	ıra pii	aciun	pidiur		stis c	ld bl	s glu	n in	v eu	A VII	vlor	hor	sricu	Srich	us a	nach	otis	reciu	unda	assia	aris a		rivia	moge	scio a	<u>niur</u>	, ,	niun	un c	hant	anc	ago	anor ¹	intis e	s cirius atilla s	ium r	notis	x pan	dmeri:	snath	x acu	vrus	ania
æ	Stellaria ul Jtricularia	Chara spp	Juncus co	Pleuroziu	Ranuncul	-ophocole	Cephalozi	Aneura pii	Climaciun	Scorpidiur	Sphagnur	Agrostis c	Alisma pl.	Alnus glu	Apium in	Calluna v	Carex VII	Cactvlor	5riophor	Hypericu	Hypericu	Juncus a	Lysimachia nemo	Myosotis	Nartheciu	Osmunda	Parnassia	Phalaris a	Plantado	oa trivial	otamoge	Senecio a	Vaccinium	Aldae	Seraniun	Hypnum	Marchant	<u>Mylia anc</u>	Solidago	Prenancia I	Avnsotie e	² otentilla 2	Trifolium re	Philonotis	Carex pan	Valeriana (Arrhenath	Carex acu	Lathyrus	Scapania
~~~~~	162 Stellaria uliginosa 170 Utricularia minor									216 Scorpidium scorpioides	21/ Sphagnum rimbriatum 223 Sphagnum papillosum		Alisma plantago aquatica	4 Alnus glutinosa	6		34 Carex Viridula SSP. brachyrnync 37 Centaurea niora		069 Eriophorum vaginatum			1	101 Lysimachia nemorum						123 Plinguicula vuigaris 124 Plantado lanceolata	-			172 Vaccinium oxycoccus	-			257 Marchantia polymorpha			261 Riccardia pinguis 266 Drenanocladus uncinatus						48 Deschampsia caespitosa 173 Valeriana officinalis			248 Lathyrus montanus	59 Scapania undulata

-				
-צו-גורר 🤶	9871 03			
-או-אורד אורד -או סורא (9)-או כר	12 1836			
ਹ 13-(9)	56 1603			
-R2	46 2893			
18-(4)	52 1603			
「とろ-(A4)	53 1603			
7	54 1603			
	2031 1203			
0 23-(9)				
<u>с</u> ся-са)	55 1603			
	21 1603			
5A-7G	32 WES			
28-70	34 MFS			
2A.	25732		• • • • • • • • • • • • • • • • • • • •	
۲۶.	1 5235		۷ LO	
เห	39 2903			
	50 1603	N N N		
	10 5755			
			+	
	41 2001			
	33 MES	· · + + · ^ · · · ·		
	32 1836	- 		
04-R2	31 MFS	N <del>.</del> <del>.</del> .		
18-4(	30 ME2	N		
28-(6)	20 1603			
	28 1603	4 <b>7</b>		
	162 31			
Q	2091 9			
		4		
	4 2732	· · · · · · · · [*] · · + + ·	· · · · + · · · · · · <u>·</u> · · · ·	
	3 2732	` +	<u> +</u>	
TRANSITION MIRES??         RICH           - R1         - R1         - R1           - R1         - R2         - R1           - R1         - R2         - R1           - R1         - R2         - R1	9871 23			
<u>ਦ</u> 2ਸ-	0481 84			+
-81	42 2904		+ . +	
ਸ਼ ਸ	40 1000			
<u>ک</u> ا	38 5605	+		
NS SA	37 2896			
Е IЯ-80	16 MES		· · · · · · · · · · · · · · · · · · ·	
	18 1832			
	1162 31			· · · · · · · · · · · · · · · · · · ·
-		<u>.</u>		
	14 MES			
	11 MES			
-K3	9972 9			
۲ <u>۶</u> -	7 5766			
28-	2091 9			
18-2C	46 MES			
۲۶.	41 1840			
	42 5893	••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·
	44 2897	N		
	3682 95			
	1871 21	. +		
	8 5752			+ + +
<u>г</u> 2Я-	43 2904			
-R1-SUM ⊊ี	9871 88			
צז-אורר ►	9821 19			
١۶	13 2077			
	SODE N NO	str nigosu nininin nob nob nob nob	a sp us c c cup cup cup cup cur cul cur cul fe	na oos den tet riv
	MFS CODE TWSPN NO	<ul> <li>b Call str</li> <li>b Call str</li> <li>29 Agros ca</li> <li>31 Alisma p</li> <li>35 Apium in</li> <li>54 Cent nig</li> <li>63 Eleoch p</li> <li>77 Hype elo</li> <li>83 Lemna mi</li> <li>96 Osmunda</li> <li>99 Phalar a</li> <li>99 Phalar a</li> <li>99 Phalar a</li> <li>1107 Potamo b</li> </ul>		

Monaghan Fen Survey 2007 Appendix 6B. Releve table as sorted and ordered by Twinspan

## 

1286-R1-KILL 1839-R1 1830-R1	21	, ,		•	•	•	•																														2		•	•		•
1603(6)-R1 2893-R2				•	•	•			+	•	•	•	•																										_	•	-	+
1603(4)-R1		'	'	'	'	'	'	'	'	•	'	'	'	'															+ -										•			÷
18-(A4)2031				'	'	'	'					'	'					'		'		'							+ .	~										+	+	
1603(5)-R1																									•		•	•													+	
1603(6)-R2	72																											+		- +	- ,											
1603(5)-R2	52																												, <del>.</del>		2							-				
1603(2)-R2	12																														~				2						2	
68-702-R3								~																				•														+
CR-T02-R2																																									<u> </u>	
2732-R2	2	'	'	'	•	+	'	'	+	•	•	•	'	•		•	'																						•		-	
232-R1	1	'	'	'	'	'	'	'	'	•	•	+	•	'	•	'	'	'	'	•	'	'	1										'	•	1	'	1	'	•	•	~	'
1603-21		'	'	'	'	'	+	'	+	'	'	'	'	'	'	'	'	'	'	'	'	'	'		•								'	'	'	'	'	1	'	'	2	+
5755-R4																													•								ε	+			~	
18-1062								N	ო							÷													+ .									N			ო	
18-702-BM	33						+	ო	ო						-			-													, '							-			~	
1836-R1	32				-			ო	~																					, <del>,</del>		+		+			ო				ო	
MFS04-R2	31				-			+							~													+ `		- ົ	1 0	+			-		2				ი	
NFS04-R1					+			2	ო																				-						+			+			2	
1603(9)-R2					•														•							•			. "						·			-	·	•	-	
16)2031				'	-		•									•	•		•	•	'	•					_	۰.	_	r <del>~</del>	- ~					•	<u>'</u>	<u>'</u>	•	•	~	
18-7031 1607-R2		'	'	'	+	•	+	.,		÷	•				•	'	'	•	'	'	'	•	'	-	•	-	`,	+` N	י י ר	⊦ + ⊌	.`		+		2	:	÷	`	'	•	~	
	9 7	'	'	'	'	'	'	+	+			'	'	'	'	'	'	'	'	'	'	'	'								1		' +			:		•	+	•	2	'
5732-R4				'	'	'	'	_	÷			1	'					'	;	•		'					- -		יי + ^	, 1 <del>-</del>			+		+ N		ε	+			2	
1786-R1-DUM			<u>.</u>	<u>.</u>	-	<u>.</u>	<u>.</u>	<del>-</del>	2	<u>.</u>	<u>.</u>	<u>.</u>	<u>.</u>	<u>.</u>	+			2	<u>.</u>		<u>.</u>	÷	<u>.</u>	<u>.</u>	<u>.</u>	<u>.</u>			т 				<u>.</u>	<u>.</u>	+		2	<del>-</del>	<u>.</u>	+	-	<u> </u>
1840-R2	48			+			-	+	2																				+ .							2		-	<del>.</del>	2	~	+
18-4081	45								~	+					+												+		, ۳	, r	с				-						2	
18-9091	40						~	2		-																	+		· ~	- ແ	2 0						S	-			2	
18-202-R1					+		•							•	•	+		-	•	•		•			•	•	·	•	Ŧ		1 -			ო	~	•	4	-	·	•		
2896-R2		'	<u>'</u>	'	-	'	'				•			•													<u>'</u>						•		.,	+ +	10	Ţ	~	•	-	
NFS08-R1 1837-R1		, -																	•						•				• •					4	+	+	ŝ	÷		•	- -	
19-11-81			'	'	'	, ,	+	, -	2						÷				'										, , <del>,</del>	-	2	'		2	+ ∼	- -	ß	-	'	'	ი	י ר
NFS06-R1				'			+	~	~	م										'									- <del>.</del>	- <del>.</del>					2					÷	2	Ţ
NFS01-R1		÷	÷	÷	÷	÷	÷		+	2	÷		÷	÷	÷	÷	÷	N	÷	÷	÷	÷	÷	÷	÷	÷	• + '								2		ი				~	~
2755-R3	6								~									+									-			. +	. ~			4	+		ŝ	-	2	2	~	+
18-2522	L							~	~																						~				2		ß	-	2		+	+
28-70a1	9							2	۲ د	-			ï		,	,													، ۳	, +	. ∾				+		ŝ	-		-		<b>.</b>
NFS05-R1			•	•	~	•	•	2											•					•	•	•	+	•		· `		+	•	-	•		5	2		+	~	+
1840-81			'	•	-	•	+	2	י רא								•		•	'	'	•	÷	'	•	•	+	•	•		- 6		•	<del>~-</del>		-	4	2	. 4	•	2	, ,
18-7682 18-2893-R1		'	'	'	•	'	÷	2	-				- 5	'	'	'	'							'	•	'	•	•	• •			- -			•			-	'	•	ო	÷.,
2895-R1		'	'	'	, -	'		4	-						1	1			'							•	:		• •	- -				1							2	<i>c</i>
18-1871																										;	:	+				;		- 7			-				,	
2755-R2	8				- -																									- -				+			-	+	÷		+	
2904-R2	43	1							-	2		2			+															, c	1 -			4	2		2				-	-
MU2-19-20M	<b>7</b> 4							~			+								+									+							2	+	2					
MU2-19-2871								~			+				+		+	-																	2							
1286-R2-KILL 2077-R1								1	-				+			-	+			۔ ص	- -	-		-	-	- -		-			-	+	ı	-	-	<u>.</u>	4	_			<u>.</u>	
		-	'	'		' ) -								י ה	'	'	'	י ה	'						0	~				, ' , .	'										Ŧ	
MFS CODE	TWSPN NO	Solidago	Potent a	Trifol r	Typh and	Brv pseu	o dolic	Agrost s	Galium p	Call gig	Philon c	Scorp sc	etula p	Carex pa	cuta v	Cirsium	Dactlyor	Mentha a	Valeria	Carex di	Descham	oilob h	Fest rub	rhen e	Carex ac	Lathyrus	Caltha p	iopn a	Carev cu	Carex ro	Pot palu	Salix ci	Veron s	Carex di	Hydrocot	Filipend	Call cus	Cardam p	Lynchnis	Plag ros	Equis fl	Holous I

		11001	11010	11011	11011	1110		OLLL	OLLLL	11111	1111	1000	1001	1001	10100	10101	10101	10110	101110	101111	101111	110000	110001	110001	110001	110010	110010	110010		110100	110101	110110	110110	110111	111000	111000	111000	111000	111000	111000			111001	111001
1786-181-181	90															-						-	+	-	2		. '	2																
18-9581			+					. `	-						-															-														
1603(6)-R1		+	+			+	ł		т	-		33						-				ო		+																				
2893-R2			-	'	~ ~			•															•					. ]		· `			'	+		2						+	·	
1603(4)-R1		'	'	'	~	'	i '	+	•		'	2		•		+							•																					
1603(44)-R1 1603(44)-R1		'	'	'	'	, ,	4	'	•	•	•	:	•	•	•	י פ	•	2					' '													ი ი ი	•	' 						
1603(6) 81		'	'	'	'	c											•	+		÷		- 5	:															<del>.</del>		, ,		'	'	'
1603(5) 52						Ċ	° ,									ε																								-				
1603(2)-R2				- -		ç	N				÷						م											N .						- -		י מ								
68-702-R3	32							+								+															4	+		2				<u>_</u>	+	- ,				
28-702-R2	34												-			+		~						2														<u>.</u>					~	~
2732-R2	2					c	V																																					
18-2672	١					ç	o																																					
1903-R1												2							+																									
1603(2)-R1					~	1 0	o			•		•		•	·		•	•					·			+		N 1		•				-		4			•		•	•	•	
2755-R4			•			° ·	N	•	•	·	·	·	•	·	·	•	•	·	2	•	•	·	•	·	·	•	+	+ '	N	•					•	2		•	•		•	•	•	•
19-1002			+	•		c	N	·	•	·	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		۰ ۱	'	+								•	•	•	
NFS07-R1		'	'	'	'		. `	-	•	•	•	•	•	•	'	•	•	<u>.</u>	'	•	'	•	'	•	•	•	•	•	•	•		'	'	'		'			'			•	'	
1836-R1		'		'	'	~	0	•	•	•	•	•	•	•	•	•	•	`	•	•	•	•	'	'	•	•	•	•	•	•		'	'	'	•	'	•	•	•		•	•	'	'
MFS04-R1 MFS04-R1		'	'	'	'	、 、	t		+	'	•	'	'	'	'	'	'	'	'	'	'	'	'	•	'	•	•	'	•	•		'	'	'	'	'	'	'					'	'
1603(9)-R2		'	'	'	'		·	' N	•	۰.	, -	'	'	'	'	' 5	•	י פ	'	'	'	'	'	'	'	•	•	'	•			'	'	÷	'	'	, ,	, ,	'		•	'	'	'
1603(0) 83		'	'	'			۰		•	•				•					•			' -						:				۰ ۱		+	'	'			'		•	'	'	'
5011-R2		'	<u>+</u>	'			•					;																						+										
18-7031	S							+ ·								4																					_							
2732-R3	- 7	÷	÷			-	-			÷	÷	÷	÷	÷	÷		÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	Ż															÷	
2732-R4	£	÷	÷					+	:		÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷					+											÷	
1786-FR1-DUMN	22		+																																									-
1840-R2	84			<u>-</u>	· ~	•						+																																
19-4-R1	45					~	-									2												~																
19-9091	40															-		-									. '	-																
18-2062			+			ç	N					-														•	2		+															
2896-R2			+		+			•	•	·	•	•	•	•	•		•	+		•		•	•	•	•	•	•	•	•	•												•	ŀ	
NFS08-R1						~		•		•	·	•	•	•	•	_	•			•		-	•		•	•	•	•	•	•		'			•		•	•	•		•	•	•	
1837-R1		'	'	+					•			•	•	•	•	Ţ	•	<u>.</u>	'	•			'					•																
2911-R1		'	+	'	+	. (·	0, , 0	_ ,	-			•						_		•	•			'	•	•		+											•		•	•	'	'
MFS06-R1 MFS01-R1	71 11	'	'	'	'		0		-		•	'	'	'	'	'	'		'	•	'	'	'	<u>'</u>	'	•	•	'	•	•		'	'	'	'	'	'	, 	. '				'	'
S755-R3	6	'	'		' 	. c	N	'	•	•	•	'	'	'	'	'	+		'	+	'	'	'		+	'	'	+	•	+		'	'	'	'	'	'		'		•	'	'	'
18-255	Z	'	÷	+ ~	. –	- r	o	'	•	'	'	'	'		'	'	'	'	'	'	'	'	'	'	'	- -	'	'	•	'	· ·	. '	'	'	'	'	'	'	'		•	'	'	'
28-7031	9		~		<del>.</del>	•								+		÷													-															
NFS05-R1	-		2		~		+		:			- -																																
1840-R1		+	~		,	~	-					-								+				Ì					-				,											,
18-2893-R1		+	+					-				+																			. 4													
18-7082	44	-	~									-				-																												
18-968S	98		~																												. 4	- ,												
17-1871	15	2				+	+				+		ß					•	2		-					+	. '	N																
2755-R2	8		~	+	. <b>.</b>	•						-							2						2	ო																		
2904-R2			•			+	+	•	•			•				3				•				N				•		•							•					•	·	
MU2-19-0871			+	+		ç	N	-	•	4												•	+	+	•	•	•	•	•	•												•	·	
MU2-19-201			+	'		+	+	•			~ 1				~ 1					•		-	•	~				•														•	·	•
1786-R2-KILL						¢		-			5		ı		^N		2					~							_														ı	
1A-7702	13		'	'	•	1	•	•	•	'	•	'	'	'	•	•	•	•	•	1	•	(7)	•	•	'	•	'	'	-	ı			•	'	'	'	,	'	'	1	•		'	
MFS CODE	TWSPN NO	113 Salix au	33 Angel sy											128 Dactlyor	5 Carex fl					59 Dactlyor	: Drosera	100 Phragmit	32 Alnus gl	Carex pa	92 Molinia	16 Sclero p	Sphag sq	Succisa		Fotam po		12 Eurhyn p				Sphag fa				120 Varrin o	Saboa fi	spnag II	25 Sphag pa	Frinnh v

		111001	11001	11001	11001	11001	11001	11010	111010	11010	11010	111011	111011	111011	111100	111101	111101	11110	11110	11110	11110	111110	111110	011110	111110	11110	11111	
	00	•	•	•	•	•	•	•	•		-									-							ო	
1289-81-אורר 1836-81			'	'	'	'	'	'	'	'	÷	'	'	'	'	З	+	÷	+	•	, _	, 	, ,	' _			20	
1830-61			'	'	'	'	'	:	÷	:		+	- 5	:	:		:	2		+		-			+ +	· .	_	0
2893-R2								+	2	+	+	+		+	+	+	+			+								- 0 -
1603(4)-R1		4		- -	+	+	- -				÷		- N		+	+	+											-0-
1603(4A)-R1			÷		÷				÷	÷		÷		÷	÷	÷	÷	÷	÷	÷	÷	÷						0 0
1603(5)-R1	54								~																			-00-0-
1603(6)-R2	72							<u>-</u>	2	2																		-00-00
1603(5)-R2	52												+															-00-00
1603(2)-R2	12									2	-	+	+															-00-00
68-702-R3	35			+				<b>-</b>	~		-																	-000
28-702-R2	34		~	۰.				~			~			+														- 0 0 0
2732-R2	2						•		•	•		•	•	•			•		•	•	·	,	•	•			•	0
132-81	ŀ						•		•	•	•	•	•	•	•	÷	•		·	•	·	·	•	·				* * * * 0
2903-R1		•	•	'	'		•			•		•	•	•	•		•		•	•	•	·	•	•			•	0 0 - * * - 0 0
1603(2)-R1		•	•	'	'	'	•	+		•	'	•	•	•	•	•	•	'	•	•	•	'	•	•				077707 *
2765-R4			'	'	'	'	'	'	'	•	'	•	•	'	'	'	•	'	•	•	'	'	•	•				0 0 0 *
2901-R1 MFS07-R1			'	'	'	'	•	'	'	•	'	'	•	•	'	'	•	'	•	•	'	'	•	•				* * * * * *
		'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	•	'	'	'	'	•				* • • • • • •
1836-R1 MFS04-R2			'	'	'	'	'	'	'	•	'	'	•	'	'	'	•	'	•	•	'	'	'	•				* • • • • • •
MFS04 B2 MFS04-R1		'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	• •			* 0 0 7 7 7 0
1603(9)-R2			'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	• •		•	* * * * * *
1603(9)-R1																												* • • • • • • •
2911-R2																												0 0 0 -
L원-209L	g	÷	÷		÷		÷		÷	÷	÷	÷	÷	÷	÷	+	÷	÷	÷	÷	÷	÷						000
2732-R3	4																											0 0 0 +
2732-R4	3																											0 0 0
MMUQ-19-871	22																											0 0
1840-R2	48																											0 0 0
1904-R1																												077077E
18-9091		•					•			•		•	•	•	•		•		•	•	·	·	·	•			•	0 0 0
18-202-R1							•		•	•	•	•	•	•	•	÷	•		·	•	·	·	·	·				00
2896-R2			'	'	'	'	'	'	'	•	'	•	•	•	'	•	•	'	•	•	'	'	•	•		•	•	0 0
MFS08-R1		'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	+	'	•	•	'	'	'	•	• •			0 7 7 0 7 7 0 7 7
1837-R1			'	'	'	'	'	'	'	'	'	'	'	'	'	1	'	1	'	•	'	'		'			•	0 0 4
2911-R1 MES06-R1		'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'				0 0
NES01-R1			'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'				0 7 7 0 7 7 0
2755-R3	6		'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'	'				00
18-2552	Z																											0 0 3
2A-7031	9																											0 0
18-205-R1	46																											0 0 - 0
1840-R1	<b>۲</b> 4																											0 0 - 0 *
1A-2893	945																											• • • • • • •
18-7e8s	44																											• • • • • • •
18-9682	36																											0 0 - 0 *
181-1871	15									-								-										* • • • • •
2755-R2	8							-	2		+											+						*
2904-R2		•	•				•		•	•		•	•	•	•		•		•	•	·	·	•	•				*0-
MU2-18-9871		•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	·	·	•	•			с С	* 0 - 0 - 0
MUS-18-9871		•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•				0 - 0 - 0 * *
1786-R2-KILL																+	•			•	1	ı.						* 00
18-7702	51		'		'	'	'	'	'	'	'	'	•	'	•	'	'	'	'	•	'	'	'	'				00
MFS CODE	TWSPN NO	79 Juncus a		85 Luzula c	89 Lvsimach	94 Mvosot s					08 Pot erec	1 Aneura p		144 Cepahalo	143 Lophoc b							86 Luzula m			uz Flantago 23 Vicia cr		58 Cladium	

### Monaghan Fen Survey 2007

### Appendix 6C: Synoptic Table of Relevé

Constancy values (species occurence within a group of relevés expressed as a percentage) I = 1-20%; II = 21-40%; III = 41-60%; IV = 61 = 80%; V = 81-100. Range of cover abundance in releve in brackets, and that of environmental and releve factors shown (format x : y). * pH is field based measured soon after collecting sample.

			Transition	Transition		
		Alkaline Fen	Mire (Rich)	Mire (Poor)	Poor Fen	Marsh
	Relevés in Group	7	19	14	12	2
	Species Richness	70	78	73	78	24
pH*		6.5 : 8.1	6:7.1	5.5:6.8	4.2:6.8	6.7 : 6.8
	depth	-20:0	-15:5	-10 : 10	-20:5	-10:0
Soil ty	•	M : P	P	P	P : PM	P
	lepth cm	60 : >200	40 : >200	100 : >200	30:>200	40 : >200
	cover %	100	100	100	100 0	100
Trees Shrub		0 0:5	0	0	0:10	0 : 35 0
			0:15	-		-
	Grass/Sedge %	60 : 100	70:100	30:100	40:100	95:100
	hytes %	70 : 100	25 : 100	0:100	20:100	0:5 0:5
Algal [•]		0	0	0:100	0:5	0:5
	Peat/Soil %	5:90	-	0:25	0:20	-
Litter			0:100	0:100	0:70	0:30
· ·	Water %	0:5	0:50	0:100	0:50	0:25
	t Herb layer cm	45 : 100	40:80	40:70	30:60	60 : 100
	ge No. Species per relevé	20	19	15	18	14
specie	es per relevé range	13 : 28	12 : 29	7:27	4:29	12 : 15
Alleal	a Ean Caricatalia devellares					
Alkalii 122	ne Fen - Caricetalia davallianae Phragmites australis	IV (1-3)	I (+-2)	I (1)	I (1-2)	(3)
30	Carex panicea	V (+-2)	I (1-2)		III (1-2)	
35	Carex viridula ssp. oedocarpa	V (+-2) III (2)	I (+)	I (1)	I (+)	-
188	Campylium stellatum	111 (+-1)	I (1)	II (+-1)		
43	Cladium mariscus	111 (2-3)				
203	Hylocomium splendens	II (1-2)			I (1)	
32	Carex pulicaris	III (+-1)				
193	Ctenidium molluscum	111 (+-3)		l (+)	l (+)	
098	Luzula multiflora	II (1)			l (+)	
15	Briza media	II (+-1)				
42	Cirsium palustre	(+)	l (+)		l (+)	
197	Drepanocladus revolvens	111 (+-5)		_	1 (2)	
120	Pedicularis palustris	II (1-2)	l (+)		I (2)	
25	Carex flacca	III (1-2)				
Transi	tion mire - Caricetalia davalliana					
21	Carex diandra	III (1-2)	(1-4)	l (+)	I (+-2)	
73	Filipendula ulmaria	III (+-1)	111 (+-2)	. ( )	1 (1 2)	V(3)
238	Plagiomnium rostratum	l (+)	11 (+-2)	l (+)	l (+)	
146	Rumex acetosa		11 +-2)	1 (2)	(1-2)	
81	Holcus lanatus	l (+)	IV (+-2)	l (+-2)	II (+-1)	III (1)
099	Lychnis flos-cuculi	I (1)	II (1-2)	l (+)	I (1)	
63	Equisetum palustre	l (+)	II (+-2)		l (+-1)	
184	Calliergon giganteum		(+-2)	I (1)		
-					-	
	tion mire - Caricetalia nigrae				1 (1)	
20	Carex curta Calliergon stramineum	l (1)	III (1-3) I (+-1)	III (+-4) IV (1-4)	I (1) I (2)	(2)
185 141	Ranunculus flammula	(1)   (1)	I (+-I) II (+-1)	IV (1-4) II (+-2)	II (+-1)	(2)
141	Veronica scutellata	I (I)	I (+-1)	II (+-2) II (+)	11 (+=1)	
92	Lemna minor		I (+)	II (1-4)		
<u>                                      </u>						
Trans	tion mire - General Species		1			
186	Calliergonella cuspidata	V (1-5)	V (2-5)	II (1-3)	II (1-3)	
82	Hydrocotyle vulgaris	111 (+-2)	IV (+-3)	111 (+-2)	1 (2)	
74	Galium palustre	(+-2)	V (+-2)	IV (+-3)	l (+)	III (1)
2	Agrostis stolonifera	III (1-2)	IV (+-4)	III (+-3)	I (1)	V (1-2)
33	Carex rostrata	(+-3)	V (+-3)	V (+-4)	(+-3)	
167	Typha latifolia	I (1)	11 (+-2)	II (+-1)	I (1)	
103	Mentha aquatica	III (1-2)	II (+-2)	I (1)		
18 59	Caltha palustris	I (1)	(+-1)	II (+-2)	_	111 (1)
104	Epilobium palustre Salix cinerea ssp oleifolia	(+)	II (+-1) II (+-1)	(+)   (+)		(1)     (1)
		UU (T)		1 (+)	+	
150						
150		hzerietalia				
150 Poor F	en - Caricetalia nigrae to Scheuc	hzerietalia		(4)	(2-5)	
150		hzerietalia II (2-3)	(+-3)	I (4)	III (2-5) III (+-2)	

			T			<u> </u>
		Alkaline Fen	Transition Mire (Rich)	Transition Mire (Poor)	Poor Fen	Marsh
008	Anthoxanthum odoratum	I (+)	I (+-1)	I (1)	III (+-3)	
228	Sphagnum subsecundum			I (1)	11 (+-4)	
222	Sphagnum palustre	I (1)			III (1-5)	
130	Polytrichum commune	l (+)		l (+)	III (1)	
24	Carex echinata		I (1)	I (1)	III (1)	
260	Crepis paludosa	1 (2)			11 (+-2)	
127	Polygala serpyllifolia		-		(+)	
28 090	Carex limosa Juncus effusus	l (+)	(+)	1 (2)	II (1-2) II (+-4)	
226	Sphagnum squarrosum		1 (2)	1 (2)	II (+-4) II (+-1)	
241	Sphagnum capillifolium		1 (2)		I (1-5)	
227	Sphagnum subnitens			_	I (+-2)	
181	Aulacomnium palustre			l (+)	111 (+-2)	
219	Sphagnum cuspidatum				I (+-3)	
	anion Species					
62	Equisetum fluviatile Potentilla palustris	II (1-2) I (1)	V (+-3) V (1-3)	V (1-3) IV (1-3)	III (+-2) III (1-2)	V (+-3)
140 19	Cardamine pratensis	III (+-1)	V (1-3) V (+-2)	111 (+-2)	III (1-2) II (+-1)	
104	Menyanthes trifoliata	111 (+-2)	IV (+-3)	111 (1-4)	111 (+-4)	
088	Juncus articulatus	I (1)	111 +-2)	II (1-3)	111 (+-3)	
007	Angelica sylvestris	IV (+)	(+-2)	I (+-1)	I (+-1)	III (1)
066	Eriophorum angustifolium	III (+-1)	II (+-3)	III (+-2)	III (+-3)	
29	Carex nigra	III (1-2)	II (1-3)	11 (+-4)	111 (+-3)	III (1)
163	Succisa pratensis	III (+-2)	II (+-1)	I (2)	IV(+-2)	
182	Brachythecium rivulare		II (+-1)	II (+-1)	1 (+)	
213	Rhytidiadelphus squarrosus	1 (2)	(+-1)	1 (2)	II (1-3)	III (1)
40 179	Cicuta virosa	II (+)	II (+-1)	I (1)		
211	Viola palustris Scleropodium purum	1 (2)	I (1)	II (+-1)	II (+-2) II (+-3)	
149	Salix aurita	l (2)	1 (+)	l (+)	1 (2)	(1)
212	Rhizomnium punctatum	T (+)	I (+-1)		1 (2)	
45	Dactylorhiza maculata		1 (+)	-	I (1)	
54	Eleocharis palustris		1 (+)	I (+-2)		
58	Epilobium obscurum		I (+)	l (+)	I (1)	
72	Festuca rubra		l (+-1)			III (+)
106	Myosotis laxa		I (1)	l (+-2)		
137	Potamogeton polygonifolius		l (+)	l (+)	I (1)	
138	Potamogeton natans			II (+-1)		
239	Dactylorhiza spp.	l (+)	(+)		l (+)	
183 199	Bryum pseudotriquetrum Eurhynchium praelongum		I (1) I (+)	(+)	l (+)	
12	Betula pubescens	(+)	l (+)		1 (+)	111 (2)
23	Carex disticha		I (1-2)	-	-	(3)
41	Cirsium dissectum	II (+-1)	I (+)			
49	Drosera rotundifolia				l (+-1)	
57	Epilobium hirsutum	I (1)	I (1)			III (1)
65	Erica tetralix				l (+-1)	
096	Lotus uliginosus		l (+)	l (+)		
097	Luzula campestris				I (+-1)	
100 142	Lycopus europaeus Ranunculus lingua	+	(+)   (+)	I (1) I (2)	+	
162	Stellaria uliginosa	1	I (+)	I (2)	-	
170	Utricularia minor	1		l (+-2)	1	
234	Chara spp	1	1	I (3-5)	+	
235	Juncus conglomeratus		l (+)	l (+)		
262	Pleurozium schreberi	I (1)				
263	Ranunculus repens			l (+)	I (1)	
264	Lophocolea bidentata	1 (+)			1 (+)	
265	Cephaloziella spp.	1 (+)	-		1 (+)	
180	Aneura pinguis Climacium dendroides	l (+)				
191 216	Scorpidium scorpioides	+	(+)   (2)	l (+)	+	
210	Sphagnum fimbriatum	+	1 (2)		I (+)	
223	Sphagnum papillosum	1	1	+	I (1)	
1	Agrostis canina	1	1	I (+-2)		
3	Alisma plantago aquatica			l (+)		
4	Alnus glutinosa	II (+)				
009	Apium inundatum	ļ		l (+)		
17	Calluna vulgaris				l (+)	
34	Carex viridula ssp. brachyrhyncha	I (1)				
37	Centaurea nigra		I (1)	+		
46 069	Dactylorhiza majalis Eriophorum vaginatum	111 (+)	+		1 (1)	
069 83	Hypericum elodes	+	I (1)	+	I (1)	
		+	1 (+)		+	
84	Hypericum tetrapterum		1 (+)			
84 087	Hypericum tetrapterum Juncus acutiflorus		1 (+)	_	I (4)	

			Transition	Transition		
		Alkaline Fen	Mire (Rich)	Mire (Poor)	Poor Fen	Marsh
101	Lysimachia nemorum				l (+)	
107	Myosotis scorpioides				l (+)	
112	Narthecium ossifragum				l (+)	
118	Osmunda regalis			l (+)		
119	Parnassia palustris	I (1)				
121	Phalaris arundinacea			I (1)		
123	Pinguicula vulgaris	I (1)				
124	Plantago lanceolata	l (+)				
126	Poa trivialis		I (1)			
131	Potamogeton berchtoldii			l (+)		
157	Senecio aquaticus			l (+)		
172	Vaccinium oxycoccus				I (2)	
178	Vicia cracca	l (+)				
233	Algae			I (2)		
240	Geranium robertianum				l (+)	
236	Hypnum cupressiforme var. resu	pinatum		l (+)		
252	Ranunculus acris				I (1)	
257	Marchantia polymorpha		I (1)			
258	Mylia anomala		l (+)			
237	Solidago virgaurea		I (1)			
261	Riccardia pinguis				l (+)	
266	Drepanocladus uncinatus			I (2)		
267	Myosotis secunda			l (+)		
268	Potentilla anserine		I (1)			
269	Trifolium repens		l (+)			
208	Philonotis calcarea	II (+)				
31	Carex paniculata	l (+)				
48	Deschampsia caespitosa					III (1)
173	Valeriana officinalis	l (+)				
246	Arrhenatherum elatius					III (1)
247	Carex acutiformis					III (1)
248	Lathyrus montanus					III (1)
259	Scapania undulata			l (+)		

Species				
Code	Abbreviation	Species full name	English Names	Latin Synonyms
001	Agros can	Agrostis canina	Velvet Bent	
002	Agrost stol	Agrostis stolonifera	Creeping Bent Grass	
233	Algae	Algae	Algae	
003	Alisma pl aq	Alisma plantago aquatica	Water-plantain	
004	Alnus glut	Alnus glutinosa	Alder	
005	Alop genic	Alopecurus geniculatus	Marsh Foxtail	
006	Anag tenella	Anagallis tenella	Bog Pimpernel	
180	Aneura ping	Aneura pinguis	Liverwort	Riccardia pinguis
007	Angel sylv	Angelica sylvestris	Angelica	
800	Anthox od	Anthoxanthum odoratum	Sweet Vernal Grass	
009	Apium inunda	Apium inundatum	Lesser Marshwort	
010 246	Apium nodi Arrhen elatius	Apium nodiflorum Arrhenatherum elatius	Fool's Water Cress	
240	Athyrium f-f	Athyrium filix-femina	False Oat-grass Lady Fern	
181	Aulocom pal	Aulacomnium palustre	Moss	
011	Berula erec	Berula erecta	Lesser Water-parsnip	
012	Betula pub	Betula pubescens	Birch	
012	Bidens cer	Bidens cerua	Nodding bur-marigold	
014	Bidens tripar	Bidens tripartia	Trifid bur-marigold	
182	Brachy riv	Brachythecium rivulare	Moss	
015	Briza med	Briza media	Quaking Grass	
183	Bry pseudo	Bryum pseudotriquetrum	Moss	
				Calliergon or Arcocladium
186	Call cusp	Calliergonella cuspidata	Spear Moss	cuspidatum
184	Call gig	Calliergon giganteum	Moss	Acrocladium giganteum
185	Call stram	Calliergon stramineum	Moss	
016	Callitrich stag	Callitriche stagnalis	Common water-starwort	
017	Calluna vul	Calluna vulgaris	Ling Heather	
018	Caltha pal	Caltha palustris	Marsh Marigold, Kingcup	
187	Calyp muell	Calypogeia muelleriana	Liverwort	Calypogeia muellerana
188	Camp stell	Campylium stellatum	Moss	
019 247	Cardam pra	Cardamine pratensis Carex acutiformis	Lady's Smock Lesser Pond Sedge	
247	Carex acutifor		Lesser Porla Seage	
034	Carex brach	Carex viridula ssp. brachyrhyncha	Long-stalked Yellow Sedge	Carex lepidocarpa
034	Carex curta	Carex curta	White Sedge	
020	Carex diand	Carex diandra	Lesser Tussock Sedge	
022	Carex dioic	Carex dialidra	Dioecious Sedge	
023	Carex disti	Carex disticha	Brown Sedge	
024	Carex echin	Carex echinata	Star Sedge	
025	Carex flac	Carex flacca	Glaucous Sedge	
026	Carex hos	Carex hostiana	Tawny Sedge	
027	Carex lasio	Carex lasiocarpa	Slender Sedge	
028	Carex limosa	Carex limosa	Bog Sedge	
029	Carex nigra	Carex nigra	Common Sedge	
035	Carex oed	Carex viridula ssp. oedocarpa	Common Yellow Sedge	Carex demissa
031	Carex pancl	Carex paniculata	Greater Tussock Sedge	
030	Carex panic	Carex panicea	Carnation Sedge	
032	Carex pulica	Carex pulicaris	Flea Sedge	
033	Carex ros	Carex rostrata	Bottle Sedge	
036	Carex virid	Carex viridula ssp. viridula	Small-fruited Yellow Sedge	C. serotina/C. oederi
037	Cent nigra	Centaurea nigra	Blackheads	
265	Cepahaloz spp	Cephaloziella spp.	Liverwort	
038	Cerast font	Cerastium fontanum	Common mouse-ear	
039	Chara spp	Chara spp	Stoneowrt	
040	Cicuta viro	Cicuta virosa	Cowbane	
189 041	Cinc font Cirsium dis	Cinclidotus fontinaloides Cirsium dissectum	Moss Moadow Thistle, Fon Thistle	
041	Cirsium dis	Cirsium dissectum Cirsium palustre	Meadow Thistle, Fen Thistle Marsh Thistle	
042	Cladium mar	Cladium mariscus	Saw Sedge	
190	Cladop fluit	Cladopodiella fluitans	Liverwort	Cephalozia fluitans
191	Clim dend	Climacium dendroides	Moss	
192	Craton filicin	Cratoneuron filicinum	Moss	Amblystegium filicinum
260	Crepis palud	Crepis paludosa	Marsh Hawk's-beard	
193	Ctenid moll	Ctenidium molluscum	Moss	
044	Dactlyor incar	Dactylorhiza incarnata	Marsh Orchid	
045	Dactlyor macul	Dactylorhiza maculata	Heath Spotted-orchid	
046	Dactlyor maj	Dactylorhiza majalis	Broad-leaved Marsh-orchid	
047	Dactyl glom	Dactylus glomerata	Cock's-foot	
048	Descham caes	Deschampsia caespitosa	Tufted hair-grass	
194	Dicran scop	Dicranum scoparium	Moss	
195	Drep cosson	Drepanocladus cossonii	Moss	Drepanocladus intermedius
197	Drep revolv	Drepanocladus revolvens	Moss	
266	Drep uncinat	Drepanocladus uncinatus	Moss	

Abbreviation	Species full name	English Names	Latin Synonyms
Drosera rot	Drosera rotundifolia	Round-leaved Sundew	
Dryopt affin	Dryopteris affinis	Scaly male-fern	
	~ ~ .		
+ ·			
Epipactis pal	Epipactis palustris	Marsh Helleborine	
Equis fluv	Equisetum fluviatile	Water Horsetail	
Equis pal	Equisetum palustre	Marsh Horsetail	
Equis varie	Equisetum variegatum	Variegated Horsetail	
U			
			+
			+
Fiss adian	Fissidens adianthoides	Moss	
Font anti	Fontinalis antipyretica	Moss	
Fraxinus excel	Fraxinus excelsior	Ash	
Galium pal	Galium palustre	Common Marsh-bedstraw	
Galium sax	Galium saxatile	Heath Bedstraw	
Galium ulig	Galium uliginosum	Fen Bedstraw	
Ger robert	Geranium robertianum	Herb Robert	
7		<u> </u>	
	~ ~ ~		
			Drepanocladus vernicosus
- · · ·			
		5	
	i giocomiani opionaono		
Tiylee spielia	Hypnum cupressiforme var.		
	Hypnum cupressiforme var. resupinatum	Moss	
Hyp cup v res	Hypnum cupressiforme var. resupinatum Hypericum elodes	Moss Marsh St John's-Wort	
Hyp cup v res	resupinatum		
Hyp cup v res	resupinatum		
Hyp cup v res Hyperic elod Hyperic tetrap Hypoch rad	resupinatum Hypericum elodes Hypericum tetrapterum Hypochoeris radicata	Marsh St John's-Wort Square stalked St John's-Wort Cat's Ear	
Hyp cup v res Hyperic elod Hyperic tetrap Hypoch rad Iris psuedo	resupinatum Hypericum elodes Hypericum tetrapterum Hypochoeris radicata Iris pseudacorus	Marsh St John's-Wort Square stalked St John's-Wort Cat's Ear Flag Iris	
Hyp cup v res Hyperic elod Hyperic tetrap Hypoch rad Iris psuedo Juncus acuti	resupinatum Hypericum elodes Hypericum tetrapterum Hypochoeris radicata Iris pseudacorus Juncus acutiflorus	Marsh St John's-Wort Square stalked St John's-Wort Cat's Ear Flag Iris Sharp-flowered Rush	
Hyp cup v res Hyperic elod Hyperic tetrap Hypoch rad Iris psuedo Juncus acuti Juncus artic	resupinatum Hypericum elodes Hypericum tetrapterum Hypochoeris radicata Iris pseudacorus Juncus acutiflorus Juncus articulatus	Marsh St John's-Wort Square stalked St John's-Wort Cat's Ear Flag Iris Sharp-flowered Rush Jointed Rush	
Hyp cup v res Hyperic elod Hyperic tetrap Hypoch rad Iris psuedo Juncus acuti Juncus artic Juncus bulb	resupinatum Hypericum elodes Hypericum tetrapterum Hypochoeris radicata Iris pseudacorus Juncus acutiflorus Juncus articulatus Juncus bulbosus	Marsh St John's-Wort Square stalked St John's-Wort Cat's Ear Flag Iris Sharp-flowered Rush Jointed Rush Bulbous Rush	
Hyp cup v res Hyperic elod Hyperic tetrap Hypoch rad Iris psuedo Juncus acuti Juncus artic Juncus bulb Juncus cong	resupinatum Hypericum elodes Hypericum tetrapterum Hypochoeris radicata Iris pseudacorus Juncus acutiflorus Juncus articulatus Juncus bulbosus Juncus conglomeratus	Marsh St John's-Wort Square stalked St John's-Wort Cat's Ear Flag Iris Sharp-flowered Rush Jointed Rush Bulbous Rush Compact Rush	
Hyp cup v res Hyperic elod Hyperic tetrap Hypoch rad Iris psuedo Juncus acuti Juncus artic Juncus bulb Juncus cong Juncus eff	resupinatum Hypericum elodes Hypericum tetrapterum Hypochoeris radicata Iris pseudacorus Juncus acutiflorus Juncus articulatus Juncus bulbosus Juncus conglomeratus Juncus effusus	Marsh St John's-Wort Square stalked St John's-Wort Cat's Ear Flag Iris Sharp-flowered Rush Jointed Rush Bulbous Rush Compact Rush Soft Rush	
Hyp cup v res Hyperic elod Hyperic tetrap Hypoch rad Iris psuedo Juncus acuti Juncus artic Juncus bulb Juncus cong Juncus eff Juncus subn	resupinatum Hypericum elodes Hypericum tetrapterum Hypochoeris radicata Iris pseudacorus Juncus acutiflorus Juncus articulatus Juncus bulbosus Juncus bulbosus Juncus conglomeratus Juncus effusus Juncus subnodulosus	Marsh St John's-Wort Square stalked St John's-Wort Cat's Ear Flag Iris Sharp-flowered Rush Jointed Rush Bulbous Rush Compact Rush Soft Rush Blunt-flowered Rush	
Hyp cup v res Hyperic elod Hyperic tetrap Hypoch rad Iris psuedo Juncus acuti Juncus artic Juncus bulb Juncus cong Juncus eff Juncus subn Lathyrus mon	resupinatum Hypericum elodes Hypericum tetrapterum Hypochoeris radicata Iris pseudacorus Juncus acutiflorus Juncus acutiflorus Juncus articulatus Juncus bulbosus Juncus conglomeratus Juncus effusus Juncus subnodulosus Lathyrus montanus	Marsh St John's-Wort Square stalked St John's-Wort Cat's Ear Flag Iris Sharp-flowered Rush Jointed Rush Bulbous Rush Compact Rush Soft Rush Blunt-flowered Rush Bitter-vetch	
Hyp cup v res Hyperic elod Hyperic tetrap Hypoch rad Iris psuedo Juncus acuti Juncus acuti Juncus bulb Juncus cong Juncus cong Juncus subn Lathyrus mon Lemna min	resupinatum Hypericum elodes Hypericum tetrapterum Hypochoeris radicata Iris pseudacorus Juncus acutiflorus Juncus articulatus Juncus bulbosus Juncus conglomeratus Juncus effusus Juncus subnodulosus Lathyrus montanus Lemna minor	Marsh St John's-Wort Square stalked St John's-Wort Cat's Ear Flag Iris Sharp-flowered Rush Jointed Rush Bulbous Rush Compact Rush Soft Rush Blunt-flowered Rush Bitter-vetch Common Duckweed	
Hyp cup v res Hyperic elod Hyperic tetrap Hypoch rad Iris psuedo Juncus acuti Juncus acuti Juncus bulb Juncus cong Juncus cong Juncus subn Lathyrus mon Lemna min Lemna tri	resupinatum Hypericum elodes Hypericum tetrapterum Hypochoeris radicata Iris pseudacorus Juncus acutiflorus Juncus articulatus Juncus orglomeratus Juncus conglomeratus Juncus effusus Juncus subnodulosus Lathyrus montanus Lemna minor Lemna trisulca	Marsh St John's-Wort         Square stalked St John's-Wort         Cat's Ear         Flag Iris         Sharp-flowered Rush         Jointed Rush         Bulbous Rush         Compact Rush         Soft Rush         Blunt-flowered Rush         Bitter-vetch         Common Duckweed         Ivy-leaved Duckweed	
Hyp cup v res Hyperic elod Hyperic tetrap Hypoch rad Iris psuedo Juncus actic Juncus artic Juncus bulb Juncus cong Juncus cong Juncus eff Juncus subn Lathyrus mon Lemna min Lemna tri Leont autum	resupinatum Hypericum elodes Hypericum tetrapterum Hypochoeris radicata Iris pseudacorus Juncus acutiflorus Juncus articulatus Juncus bulbosus Juncus conglomeratus Juncus effusus Juncus subnodulosus Lathyrus montanus Lemna minor Lemna trisulca Leontodon autumnalis	Marsh St John's-Wort Square stalked St John's-Wort Cat's Ear Flag Iris Sharp-flowered Rush Jointed Rush Bulbous Rush Compact Rush Soft Rush Blunt-flowered Rush Bitter-vetch Common Duckweed Ivy-leaved Duckweed Autumn Hawkbit	
Hyp cup v res Hyperic elod Hyperic tetrap Hypoch rad Iris psuedo Juncus acuti Juncus acuti Juncus bulb Juncus cong Juncus cong Juncus subn Lathyrus mon Lemna min Lemna tri	resupinatum Hypericum elodes Hypericum tetrapterum Hypochoeris radicata Iris pseudacorus Juncus acutiflorus Juncus articulatus Juncus orglomeratus Juncus conglomeratus Juncus effusus Juncus subnodulosus Lathyrus montanus Lemna minor Lemna trisulca	Marsh St John's-Wort         Square stalked St John's-Wort         Cat's Ear         Flag Iris         Sharp-flowered Rush         Jointed Rush         Bulbous Rush         Compact Rush         Soft Rush         Blunt-flowered Rush         Bitter-vetch         Common Duckweed         Ivy-leaved Duckweed	
Hyp cup v res Hyperic elod Hyperic tetrap Hypoch rad Iris psuedo Juncus acuti Juncus acuti Juncus oulb Juncus cong Juncus cong Juncus eff Juncus subn Lathyrus mon Lemna min Lemna tri Leont autum Littor unifl	resupinatum Hypericum elodes Hypericum tetrapterum Hypochoeris radicata Iris pseudacorus Juncus acutiflorus Juncus articulatus Juncus bulbosus Juncus conglomeratus Juncus conglomeratus Juncus subnodulosus Lathyrus montanus Lemna minor Lemna trisulca Leontodon autumnalis Littorella uniflora Lophocolea bidentata	Marsh St John's-Wort Square stalked St John's-Wort Cat's Ear Flag Iris Sharp-flowered Rush Jointed Rush Bulbous Rush Compact Rush Soft Rush Blunt-flowered Rush Bitter-vetch Common Duckweed Ivy-leaved Duckweed Autumn Hawkbit Shoreweed	
Hyp cup v res Hyperic elod Hyperic tetrap Hypoch rad Iris psuedo Juncus acuti Juncus acuti Juncus ong Juncus cong Juncus cong Juncus eff Juncus subn Lathyrus mon Lemna min Lemna tri Leont autum Littor unifl Lophoc bident	resupinatum Hypericum elodes Hypericum tetrapterum Hypochoeris radicata Iris pseudacorus Juncus actuiflorus Juncus articulatus Juncus bulbosus Juncus conglomeratus Juncus effusus Juncus effusus Juncus subnodulosus Lathyrus montanus Lemna minor Lemna trisulca Leontodon autumnalis Littorella uniflora	Marsh St John's-Wort Square stalked St John's-Wort Cat's Ear Flag Iris Sharp-flowered Rush Jointed Rush Bulbous Rush Compact Rush Soft Rush Blunt-flowered Rush Bitter-vetch Common Duckweed Ivy-leaved Duckweed Autumn Hawkbit Shoreweed Liverwort	
Hyp cup v res Hyperic elod Hyperic tetrap Hypoch rad Iris psuedo Juncus acuti Juncus artic Juncus bulb Juncus cong Juncus eff Juncus subn Lathyrus mon Lemna min Lemna tri Leont autum Littor unifl Lophoc bident Lotus ulig	resupinatum Hypericum elodes Hypericum tetrapterum Hypochoeris radicata Iris pseudacorus Juncus acutiflorus Juncus acutiflorus Juncus orglomeratus Juncus bulbosus Juncus conglomeratus Juncus effusus Juncus effusus Juncus subnodulosus Lathyrus montanus Lemna trisulca Leontodon autumnalis Littorella uniflora Lophocolea bidentata Lotus uliginosus	Marsh St John's-Wort Square stalked St John's-Wort Cat's Ear Flag Iris Sharp-flowered Rush Jointed Rush Bulbous Rush Compact Rush Soft Rush Blunt-flowered Rush Bitter-vetch Common Duckweed Ivy-leaved Duckweed Ivy-leaved Duckweed Autumn Hawkbit Shoreweed Liverwort Greater Bird-foot-trefoil	
Hyp cup v res Hyperic elod Hyperic tetrap Hypoch rad Iris psuedo Juncus acuti Juncus artic Juncus bulb Juncus cong Juncus eff Juncus subn Lathyrus mon Lemna tri Leont autum Littor unifl Lophoc bident Lotus ulig Luzula camp	resupinatum Hypericum elodes Hypericum tetrapterum Hypochoeris radicata Iris pseudacorus Juncus acutiflorus Juncus articulatus Juncus bulbosus Juncus bulbosus Juncus conglomeratus Juncus effusus Juncus effusus Juncus subnodulosus Lathyrus montanus Lemna trisulca Leontodon autumnalis Littorella uniflora Lotus uliginosus Luzula campestris Luzula multiflora	Marsh St John's-Wort         Square stalked St John's-Wort         Cat's Ear         Flag Iris         Sharp-flowered Rush         Jointed Rush         Bulbous Rush         Compact Rush         Soft Rush         Blunt-flowered Rush         Bitter-vetch         Common Duckweed         Ivy-leaved Duckweed         Autumn Hawkbit         Shoreweed         Liverwort         Greater Bird-foot-trefoil         Field wood-rush         Heath wood-rush	
Hyp cup v res Hyperic elod Hyperic tetrap Hypoch rad Iris psuedo Juncus acuti Juncus artic Juncus bulb Juncus cong Juncus eff Juncus subn Lathyrus mon Lemna tri Leont autum Littor unifl Lophoc bident Lotus ulig Luzula camp Luzula mult Lycopus eu Lynchnis flos	resupinatum Hypericum elodes Hypericum tetrapterum Hypochoeris radicata Iris pseudacorus Juncus acutiflorus Juncus articulatus Juncus bulbosus Juncus conglomeratus Juncus conglomeratus Juncus effusus Juncus subnodulosus Lathyrus montanus Lemna minor Lemna trisulca Leontodon autumnalis Littorella uniflora Lophocolea bidentata Lotus uliginosus Luzula campestris Luzula multiflora	Marsh St John's-Wort         Square stalked St John's-Wort         Cat's Ear         Flag Iris         Sharp-flowered Rush         Jointed Rush         Bulbous Rush         Compact Rush         Soft Rush         Blunt-flowered Rush         Bitter-vetch         Common Duckweed         Ivy-leaved Duckweed         Autumn Hawkbit         Shoreweed         Liverwort         Greater Bird-foot-trefoil         Field wood-rush         Heath wood-rush         Gipsywort         Ragged Robin	
Hyp cup v res Hyperic elod Hyperic tetrap Hypoch rad Iris psuedo Juncus acuti Juncus artic Juncus bulb Juncus cong Juncus eff Juncus subn Lathyrus mon Lemna tri Leont autum Littor unifl Lophoc bident Lotus ulig Luzula camp Luzula mult Lycopus eu Lynchnis flos	resupinatum Hypericum elodes Hypericum tetrapterum Hypochoeris radicata Iris pseudacorus Juncus acutiflorus Juncus articulatus Juncus bulbosus Juncus conglomeratus Juncus conglomeratus Juncus effusus Juncus subnodulosus Lathyrus montanus Lemna trisulca Leontodon autumnalis Littorella uniflora Lophocolea bidentata Lotus uliginosus Luzula campestris Luzula multiflora Lycopus europaeus Lychnis flos-cuculi Lysimachia nemorum	Marsh St John's-Wort         Square stalked St John's-Wort         Cat's Ear         Flag Iris         Sharp-flowered Rush         Jointed Rush         Bulbous Rush         Compact Rush         Soft Rush         Blunt-flowered Rush         Bitter-vetch         Common Duckweed         Ivy-leaved Duckweed         Autumn Hawkbit         Shoreweed         Liverwort         Greater Bird-foot-trefoil         Field wood-rush         Heath wood-rush         Gipsywort         Ragged Robin         Yellow Pimpernel	
Hyp cup v res Hyperic elod Hyperic tetrap Hypoch rad Iris psuedo Juncus acuti Juncus artic Juncus bulb Juncus cong Juncus eff Juncus subn Lathyrus mon Lemna tri Leont autum Littor unifl Lophoc bident Lotus ulig Luzula camp Luzula mult Lycopus eu Lynchnis flos Lysimach nem	resupinatum Hypericum elodes Hypericum tetrapterum Hypochoeris radicata Iris pseudacorus Juncus acutiflorus Juncus articulatus Juncus bulbosus Juncus conglomeratus Juncus conglomeratus Juncus effusus Juncus subnodulosus Lathyrus montanus Lemna minor Lemna trisulca Leontodon autumnalis Littorella uniflora Lotus uliginosus Luzula campestris Luzula multiflora Lycopus europaeus Lychnis flos-cuculi Lysimachia nemorum Lythrum salicaria	Marsh St John's-Wort         Square stalked St John's-Wort         Cat's Ear         Flag Iris         Sharp-flowered Rush         Jointed Rush         Bulbous Rush         Compact Rush         Soft Rush         Blunt-flowered Rush         Bitter-vetch         Common Duckweed         Ivy-leaved Duckweed         Autumn Hawkbit         Shoreweed         Liverwort         Greater Bird-foot-trefoil         Field wood-rush         Heath wood-rush         Gipsywort         Ragged Robin         Yellow Pimpernel         Purple Loosestrife	
Hyp cup v res Hyperic elod Hyperic elod Iris psuedo Juncus acuti Juncus acuti Juncus acuti Juncus bulb Juncus cong Juncus eff Juncus eff Juncus subn Lathyrus mon Lemna min Lemna tri Leont autum Littor unifl Lophoc bident Lotus ulig Luzula camp Luzula mult Lycopus eu Lynchnis flos Lysimach nem Lythrum sal Marchant poly	resupinatum Hypericum elodes Hypericum tetrapterum Hypochoeris radicata Iris pseudacorus Juncus acutiflorus Juncus articulatus Juncus bulbosus Juncus conglomeratus Juncus conglomeratus Juncus effusus Juncus subnodulosus Lathyrus montanus Lemna minor Lemna trisulca Leontodon autumnalis Littorella uniflora Lotus uliginosus Luzula campestris Luzula multiflora Lycopus europaeus Lychnis flos-cuculi Lysimachia nemorum Lythrum salicaria Marchantia polymorpha	Marsh St John's-Wort         Square stalked St John's-Wort         Cat's Ear         Flag Iris         Sharp-flowered Rush         Jointed Rush         Bulbous Rush         Compact Rush         Soft Rush         Blunt-flowered Rush         Bitter-vetch         Common Duckweed         Ivy-leaved Duckweed         Autumn Hawkbit         Shoreweed         Liverwort         Greater Bird-foot-trefoil         Field wood-rush         Heath wood-rush         Gipsywort         Ragged Robin         Yellow Pimpernel         Purple Loosestrife         Liverwort	
Hyp cup v res Hyperic elod Hyperic elod Iris psuedo Juncus acuti Juncus acuti Juncus acuti Juncus bulb Juncus cong Juncus eff Juncus subn Lathyrus mon Lemna tri Leont autum Littor unifl Lophoc bident Lotus ulig Luzula camp Luzula mult Lycopus eu Lynchnis flos Lysimach nem Lythrum sal Marchant poly Mentha aq	resupinatum Hypericum elodes Hypericum tetrapterum Hypochoeris radicata Iris pseudacorus Juncus acutiflorus Juncus articulatus Juncus orglomeratus Juncus conglomeratus Juncus conglomeratus Juncus subnodulosus Lathyrus montanus Lemna minor Lemna trisulca Leontodon autumnalis Littorella uniflora Lophocolea bidentata Lotus uliginosus Luzula campestris Luzula multiflora Lycopus europaeus Lychnis flos-cuculi Lysimachia nemorum Lythrum salicaria Marchantia polymorpha	Marsh St John's-Wort         Square stalked St John's-Wort         Cat's Ear         Flag Iris         Sharp-flowered Rush         Jointed Rush         Bulbous Rush         Compact Rush         Soft Rush         Blunt-flowered Rush         Bitter-vetch         Common Duckweed         Ivy-leaved Duckweed         Autumn Hawkbit         Shoreweed         Liverwort         Greater Bird-foot-trefoil         Field wood-rush         Heath wood-rush         Gipsywort         Ragged Robin         Yellow Pimpernel         Purple Loosestrife         Liverwort         Water Mint	
Hyp cup v res Hyperic elod Hyperic tetrap Hypoch rad Iris psuedo Juncus acuti Juncus artic Juncus bulb Juncus cong Juncus cong Juncus eff Juncus subn Lathyrus mon Lemna tri Leont autum Littor unifl Lophoc bident Lotus ulig Luzula camp Luzula mult Lycopus eu Lynchnis flos Lysimach nem Lythrum sal Marchant poly Mentha aq	resupinatum Hypericum elodes Hypericum tetrapterum Hypochoeris radicata Iris pseudacorus Juncus acutiflorus Juncus articulatus Juncus bulbosus Juncus conglomeratus Juncus conglomeratus Juncus effusus Juncus subnodulosus Lathyrus montanus Lemna minor Lemna trisulca Leontodon autumnalis Littorella uniflora Lophocolea bidentata Lotus uliginosus Luzula campestris Luzula multiflora Lycopus europaeus Lychnis flos-cuculi Lysimachia nemorum Lythrum salicaria Marchantia polymorpha	Marsh St John's-Wort         Square stalked St John's-Wort         Cat's Ear         Flag Iris         Sharp-flowered Rush         Jointed Rush         Bulbous Rush         Compact Rush         Soft Rush         Blunt-flowered Rush         Bitter-vetch         Common Duckweed         Ivy-leaved Duckweed         Liverwort         Greater Bird-foot-trefoil         Field wood-rush         Heath wood-rush         Heath wood-rush         Yellow Pimpernel         Purple Loosestrife         Liverwort         Water Mint	
Hyp cup v res Hyperic elod Hyperic elod Iris psuedo Juncus acuti Juncus acuti Juncus acuti Juncus bulb Juncus cong Juncus eff Juncus subn Lathyrus mon Lemna tri Leont autum Littor unifl Lophoc bident Lotus ulig Luzula camp Luzula mult Lycopus eu Lynchnis flos Lysimach nem Lythrum sal Marchant poly Mentha aq	resupinatum Hypericum elodes Hypericum tetrapterum Hypochoeris radicata Iris pseudacorus Juncus acutiflorus Juncus articulatus Juncus orglomeratus Juncus conglomeratus Juncus conglomeratus Juncus subnodulosus Lathyrus montanus Lemna minor Lemna trisulca Leontodon autumnalis Littorella uniflora Lophocolea bidentata Lotus uliginosus Luzula campestris Luzula multiflora Lycopus europaeus Lycopus europaeus Lychnis flos-cuculi Lysimachia nemorum Lythrum salicaria Marchantia polymorpha	Marsh St John's-Wort         Square stalked St John's-Wort         Cat's Ear         Flag Iris         Sharp-flowered Rush         Jointed Rush         Bulbous Rush         Compact Rush         Soft Rush         Blunt-flowered Rush         Bitter-vetch         Common Duckweed         Ivy-leaved Duckweed         Autumn Hawkbit         Shoreweed         Liverwort         Greater Bird-foot-trefoil         Field wood-rush         Heath wood-rush         Gipsywort         Ragged Robin         Yellow Pimpernel         Purple Loosestrife         Liverwort         Water Mint	
	Drosera rot Dryopt affin Dryopt carth Dryopt carth Eleoch mult Eleoch pal Eleoch quin Elodea can Epilob hirs Epilob barvi Epilob palu Epilob parvi Epilob parvi Epilob parvi Equis fluv Equis fluv Equ	Drosera rotDrosera rotundifoliaDryopt affinDryopteris affinisDryopt carthDryopteris carthusianaDryopt carthDryopteris carthusianaDryopt fx-maDryopteris felix-masEleoch multEleocharis multicaulisEleoch palEleocharis palustrisEleoch quinEleocharis quinquefloraElodea canElodea canadensisEpilob hirsEpilobium hirsutumEpilob obscurEpilobium palustreEpilob paluEpilobium palustreEquis palEpipactis palustrisEquis fluvEquisetum fluviatileEquis varieEquisetum variegatumErica tetErica tetralixErioph angEriophorum angustifoliumErioph gracEriophorum vaginatumEuclad verticEucladium verticillatumEupat cannEupatorium cannabinumEurhyn praeEurhynchium praelongumFest rubFestuca arundinaceaFest rubFestuca rubraFilipend ulmFilipendula ulmariaFiss adianFissidens adianthoidesFont antiFontinalis antipyreticaFraxinus excelFraxinus excelsiorGalium palGalium palustreGalium palGalium uliginosumGer robertGeranium robertianumGlyceria fluitGlyceria fluitansGlyceria notGlyceria notataHamat verniHamatocaulis vernicosusHamm paludoHaimarbya palusdosaHippurisHippuris vulgarisHolcus lanHolcus lana	Drosera rot         Drosera rotundifolia         Round-leaved Sundew           Dryopt afrin         Dryopteris affinis         Scaly male-fern           Dryopt carth         Dryopteris carthusiana         Narrow buckler-fern           Dryopt (x-ma)         Dryopteris felix-mas         Male-fern           Eleoch mult         Eleocharis multicaulis         Many stalked Spike-rush           Eleoch quin         Eleocharis quinqueflora         Few-flowerd Spike-rush           Elodea can         Elodea canadensis         Canadian Water-weed           Epilob brscur         Epilobium obscurum         Short-fruited Willowherb           Epilob boscur         Epilobium boscurum         Hoarsh Willowherb           Epilob palu         Epilobium parviflorum         Hoary Willowherb           Epilob palu         Epilobium parviflorum         Hoary Willowherb           Equis fluv         Equisetum fluviatile         Water Horsetail           Equis fluv         Equisetum palustre         Marsh Heileborine           Equis fluv         Equisetum variegatum         Variegated Horsetail           Erica tet         Erica tetralix         Cross-leaved Heath           Erioph ang         Eriophorum angustifolium         Many-headed Bog Cotton           Erioph ang         Eriophorum vaginatum         Singl

Species			1	
Species Code	Abbreviation	Species full name	English Names	Latin Synonyms
107	Myosot scor	Myosotis scorpioides	Water forget-me-not	
267	Myostis secund	Myosotis secunda	Creeping forget-me-not	
108	Myrica gale	Myrica gale	Bog Myrtle	
109	Myrioph alter	Myriophyllum alterniflorum	Alternate water-milfoil	
110	Myrioph spic	Myriophyllum spicatum	Spiked water-milfoil	
111	Nardus stricta	Nardus stricta	Mat-grass	
112	Narth ossi	Narthecium ossifragum	Bog Asphodel, Brittle Bones	
113	Nastur off	Nasturtium officinale	Water-cress	
114	Nuphar lut	Nuphar lutea	Yellow water lily	
115	Nymph alba	Nymphaea alba	White water lily	
116	Oenanth aq Oenanth croc	Oenanthe aquatica	Fine-leaved water-dropwort	
117 118	Osmunda	Oenanthe crocata Osmunda regalis	Hemlock water-dropwort Royal Fern	
110	Ostriuriua	Palustriella commutata var	Koyai rem	Cratoneuron commutatum var
205	Palust co v co	commutata	Moss	commutatum Cratoneuron commutatum var
206	Palust co v fa	Palustriella commutata var falcata	Moss	falcata
200	Palust comm	Palustriella commutata	Moss	Cratoneuron commutatum
119	Parnassia pal	Parnassia palustris	Grass of Parnassus	
120	Pedic palust	Pedicularis palustris	Marsh Lousewort	
207	Pellia epi	Pellia epiphylla	Lousewort	
121	Phalar arund	Phalaris arundinacea	Reed Canary-grass	
208	Philon calc	Philonotis calcarea	Moss	
251	Phleum prat	Phleum pratense	Timothy	
122	Phragmites	Phragmites australis	Common Reed	
256	Picea spp	Picea sp	Spruce	
123	Pinguic vul	Pinguicula vulgaris	Butterwort	
255	Pinus syl	Pinus sylvestris	Scots Pine	
238	Plag rost	Plagiomnium rostratum	Moss	
209	Plagio aff	Plagiomnium affine	Moss	Mnium affine
210	Plagio ellip	Plagiomnium ellipticum	Moss	
124 262	Plantago lan Pleuroz schreb	Plantago lanceolata Pleurozium schreberi	Plantain Moss	-
125	Poa prat	Poa pratensis	Smooth meadow-grass	
125	Poa triv	Poa trivialis	Rough meadow-grass	
120	Polygala serp	Polygala serpyllifolia	Milkwort	
128	Polygo amph	Polygonum amphibium	Amphibious bistort	
129	Polygo hydro	Polygonum hydropiper	Water-pepper	
130	Polyt comm	Polytrichum commune	Common Hair-moss	
139	Pot erecta	Potentilla erecta	Tormentil	
140	Pot palust	Potentilla palustris	Marsh cinquefoil	
137	Potam poly	Potamogeton polygonifolius	Bog Pondweed	
131	Potamo berch	Potamogeton berchtoldii	Small Pondweed	
132	Potamo color	Potamogeton coloratus	Fen Pondweed	
133	Potamo crisp	Potamogeton crispus	Curled Pondweed	
134	Potamo lucen	Potamogeton lucens	Shining Pondweed	
138	Potamo natan	Potamogeton natans	Broad-leaved Pondweed	
135 136	Potamo obtus Potamo perfol	Potamogeton obtusifolius Potamogeton perfoliatus	Blunt-leaved Pondweed Perfoliate Pondweed	
268	Potent anser	Potentilla anserine	Silverweed	
245	Pterid aquil	Pteridium aquilinum	Bracken	
252	Ranunc acris	Ranunculus acris	Meadow Buttercup	1
141	Ranunc flam	Ranunculus flammula	Lesser Spearwort	
142	Ranunc ling	Ranunculus lingua	Greater Spearwort	
263	Ranunc rep	Ranunculus repens	Creeping Buttercup	
212	Rhizo punc	Rhizomnium punctatum	Moss	Mnium punctatum
143	Rhynch alba	Rhynchospora alba	White beak-sedge	
213	Rhytid squar	Rhytidiadelphus squarrosus	Moss	
214	Rhytid triq	Rhytidiadelphus triquetrus	Moss	
261	Riccardia ping	Riccardia pinguis	Liverwort	
144	Rorrip amph	Rorippa amphibia	Great yellow-cress	
145	Rorrip palus	Rorippa palustris	Marsh yellow-cress	
244	Rubus frut agg	Rubus fructicosus agg	Bramble; Blackberry	
146	Rumex atosa	Rumex acetosa	Common Sorrel	+
147 148	Rumex cong Rumex hydro	Rumex conglomeratus Rumex hydrolapathum	Clustered Dock Water Dock	
148	Salix aur	Salix aurita	Eared Willow	+
150	Salix aui	Salix aurita Salix cinerea ssp oleifolia	Grey Willow	Salix cinerea var. atrocinerea
150	Salix trag	Salix cinerea ssp oleriona Salix fragilis	Crack Willow	
152	Salix rep	Salix repens	Creeping Willow	1
153	Salix vim	Salix repens Salix viminalis	Osier	1
154	Saxifrag aizo	Saxifraga aizoides	Yellow Mountain Saxifrage	
	Saxifrag aizo Scapania undu	Saxifraga aizoides Scapania undulata	Liverwort	

Species				
Code	Abbreviation	Species full name	English Names	Latin Synonyms
156	Schoenus	Schoenus nigricans	Black Bog Rush	
211	Sclero pur	Scleropodium purum	Moss	Pseudoscleropodium purum
216	Scorp scorp	Scorpidium scorpioides	Moss	
157	Senecio aq	Senecio aquaticus	Marsh Ragwort	
237	Solidago vir	Solidago virgaurea	Goldenrod	
158	Sparg erec	Sparganium erectum	Branched Bur-reed	
159	Sparg min	Sparganium minimum	Least Bur-reed	
107	Sparg min			
218	Sphag angust	Sphagnum angustifolium	Bog Moss	Sphagnum recurvum var. tenue
241	Sphag cap	Sphagnum capillifolium	Bog Moss	
219	Sphag cusp	Sphagnum cuspidatum	Bog Moss	
				Sphagnum auricultaum var
220	Sphag dent	Sphagnum denticulatum	Bog Moss	auriculatum
	opnag aon		bog mode	Sphagnum apiculatum
				Sphagnum recurvum var.
221	Sphag fallax	Sphagnum fallax	Bog Moss	mucronatum
217	Sphag fimb	Sphagnum fimbriatum	Bog Moss	
222	Sphag pal	Sphagnum palustre	Bog Moss	
222	Sphag papil	Sphagnum papillosum	Bog Moss	
223	Sphag recurv	Sphagnum recurvum	Bog Moss	
225	Sphag ripar	Sphagnum riparium	Bog Moss	
226	Sphag squarr	Sphagnum squarrosum	Bog Moss	
220	Sphag subnit	Sphagnum subnitens	Bog Moss	
228	Sphag subsec	Sphagnum subsecundum	Bog Moss	
220	Sphag teres	Sphagnum teres	Bog Moss	
160	Stellar gram	Stellaria graminea	Lesser Stichwort	
161	Stellar pal	Stellaria palustris	Marsh Stichwort	
162	Stellar ulig	Stellaria uliginosa	Bog Stichwort	
	5		0	
163	Succisa prat	Succisa pratensis	Devils Bit Scabious	
164	Thelyp pal	Thelpteris palustris	Marsh Fern	
230	Thuid tamar	Thuidium tamariscinum	Moss	
231	Toment nit	Tomentypnum nitens	Moss	Homalothecium nitens
269	Trifol repens	Trifolium repens	White Clover	
165	Trigloc pal	Triglochin palustris	Arrow Grass	
166	Typh ang	Typha angustifolia	Lesser Bulrush	
167	Typha lat	Typha latifolia	Reed mace, Bulrush	
243	Ulex europ	Ulex europaeus	Gorse	
250	Urtica dioica	Urtica dioica	Nettle	
168	Utric austral	Utricularia australis	Bladderwort	
169	Utric inter	Utricularia intermedia	Intermediate Bladderwort	
170	Utric minor	Utricularia minor	Lesser Bladderwort	
171	Utric vulg	Utricularia vulgaris	Greater Bladderwort	
172	Vaccin oxy	Vaccinium oxycoccus	Cranberry	
173	Valeria offic	Valeriana officinalis	Wild Valerian	
174	Veron an-aq	Veronica anagallis-aquatica	Blue water-speedwell	
175	Veron becca	Veronica beccabunga	Brooklime	
176	Veron caten	Veronica catenata	Pink water-speedwell	
177	Veron scutel	Veronica scutellata	Marsh speedwell	
178	Vicia cracca	Vicia cracca	Tufted Vetch	
253	Vicia sepium	Vicia sepium	Bush vetch	
179	Viola pal	Viola palustris	Marsh Violet	
				Drepanocladus exannulatus var rotea; Drepanocladus
232	Wanrst exan	Warnstorfia exannulata	Moss	exannulatus
234	Vacant			
270	Vacant			
254	Vacant			

## Appendix 7: Fen Survey Relevé Card & Site Record Form

Appendix 7A: NPWS National Fen Survey Site Record Form

Appendix 7B: Sample of relevé card used on the Monaghan Fen Survey 2007.

Species nomenclature for species follows that provided National Biodiversity Network Gateway website at <a href="http://www.searchnbn.net">http://www.searchnbn.net</a>.

Species abbreviations with full Latin and English species names, where these are available, are listed in Appendix 6D.

## NPWS National Fen Survey Site Record Form

Site Name	County	
Site Code	Discovery Grid Ref	
Townland(s)	Discovery Map No.	
	Survey Recorder(s)	
Detailed Survey date:	Survey – none Survey – brief only	Include reasons why no survey or only brief survey undertaken in description below

## Brief Site Description

#### Site Details

Current Conservation Status:	SAC NHA Undesignated Other:
Total Site Area (ha):	
Other main habitats present	
(Fossitt code, with % estimate):	
River Catchment:	
Topography:	
Geology:	
Quaternary deposits:	
Adjacent landuse (main):	
Site Management:	None Pasture Rough Grazing Cut Burnt Other:
Site threats	Drained Afforestation Dumping Neglect Grazing
(with % site damage):	% % % %
	Other:
Owner Information:	

#### Fen Habitat Types Present & Extent

Fen Habitat	Present (tick)	Area (ha)	Releve Nos.	Photo Nos.	Water Sample Codes
7140 Transition Mire					
7210 Cladium fen					
7220 Petrifying springs					
7230 Alkaline fen					
Poor fen					
Non-calcareous springs					

## NPWS National Fen Survey Relevé Card

Site Name	Relevé Size m ²	Alt	titude (m)	
Site Code	Relevé Code	Slo	оре	
County		As	pect	
Date	Water Sample Code			
Discovery Grid Ref	Water Depth (cm)		рН	
Discovery Map No.				
		Peat	Peat/Min	Min
Recorder(s)	Soil type			
Photo Nos.	Peat Depth (cm)			

	Cover %	Height (cm)
Total Cover		
Tree		
Shrub		
Herbs/Grass/Sedge		
Bryophytes		
Litter		
Bare Peat/Soil		
Algal		
Open Water		

# (Other habitat: _____) Fen Habitat: □ 7140 Transition Mire □ 7210 Cladium fen □ 7230 Alkaline fen □ 7220 Petrifying springs □ Poor fen □ Non-calcareous springs

#### **Drainage Features Comments**

**Observations/Comments** 

Cover scale:	+ a few	1 <5%	<b>2</b> 5-25%	<b>3</b> 26-50%	<b>4</b> 51-75%	<b>5</b> >75%

Aneura ping	180	Sphag ripar	225	Cirsium dis	041	Juncus bulb	089	Potamo perfol	13
Aulocom pal	181	Sphag squarr	226	Cirsium pal	042	Juncus cong	235	Potamo poly	13
Brachy riv	182	Sphag subnit	227	Cladium mar	043	Juncus eff	090	Pot erecta	13
Bry pseudo	183	Sphag subsec	228	Dactlyor incar	044	Juncus subn	091	Pot palust	14
Call gig	184	Thuid tamar	230	Dactlyor macu	045	Lemna min	092	Ranunc flam	14
Call stram	185	Toment nit	231	Dactlyor maj	046	Lemna tri	093	Ranunc ling	14
Call cusp	186	Agros can	001	Dactyl glom	047	Leont autum	094	Rhynch alba	14
Calyp muell	187	Agrost stol	002	Descha caes	048	Littor unifl	095	Rorrip amph	14
Camp stell	188	Alisma pl aq	003	Drosera rot	049	Lotus ulig	096	Rorrip palus	14
Cinc font	189	Alnus glut	004	Dryopt affin	050	Luzula camp	097	Rumex atosa	14
Cladop fluit	190	Alop genic	005	Dryopt carth	051	Luzula mult	098	Rumex cong	14
Clim dend	191	Anag tenella	006	Dryopt fx-ma	052	Lynchnis flos	099	Rumex hydro	14
Craton filicin	192	Angel sylv	007	Eleoch mult	053	Lycopus eu	100	Salix aur	1
Ctenid moll	193	Anthox od	008	Eleoch pal	054	Lysimac nem	101	Salix cin	1
Dicran scop	194	Apium inunda	009	Eleoch quin	055	Lythrum sal	102	Salix frag	1
, Drep cosson	195	Apium nodi	010	Elodea can	056	Mentha aq	103	Salix rep	1
Drep revolv	197	Berula erec	011	Epilob hirs	057	Menyanthes	104	Salix vim	1
Euclad vertic	198	Betula pub	012	Epilob obscur	058	Molinia	105	Saxifrag aizo	1
Eurhyn prae	199	Bidens cer	013	Epilob palu	059	Myosot laxa	106	Schoeno lac	1
Fiss adian	200	Bidens tripar	014	Epilob parvi	060	Myosot secu	267	Schoenus	1
Font anti	201	Briza med	015	Epipactis pal	061	Myosot scor	107	Senecio aq	1
Hamat verni	202	Callitrich stag	016	Equis fluv	062	Myrica gale	108	Sparg erec	1
Hyloc splend	203	Calluna vul	017	Equis pal	063	Myrioph alter	109	Sparg min	1
Palust comm	204	Caltha pal	018	Equis varie	064	Myrioph spic	110	Stellar gram	1
Palust c v c	205	Cardam pra	019	Erica tet	065	Narth ossi	112	Stellar pal	1
Palust co v fa	206	Carex curta	020	Erioph ang	066	Nastur off	113	Stellar ulig	1
Pellia epi	207	Carex diand	021	Erioph lat	068	Nuphar lut	114	Succisa prat	1
Philon calc	208	Carex dioic	022	Erioph vag	069	Nymph alba	115	Thelyp pal	1
Plagio aff	209	Carex disti	023	Eupat cann	070	Oenanth ag	116	Trigloc pal	1
Plagio ellip	210	Carex echin	024	Fest arund	071	Oenanth croc	117	Typh ang	1
Pleur schre	262	Carex flac	025	Fest rub	072	Parnassia pal	119	Typha latif	1
Polyt comm	130	Carex hos	026	Filipend ulm	073	Pedic palust	120	Utric austral	1
Scleropo pur	211	Carex lasio	027	Galium pal	074	Phalar arund	121	Utric inter	1
Rhizo punc	212	Carex limosa	028	Galium sax	075	Phragmites	122	Utric minor	1
Rhytid squar	213	Carex nigra	029	Galium ulig	076	Pinguic vul	123	Utric vulg	1
Rhytid triq	214	Carex panic	030	Glyceria fluit	077	Plantago lan	124	Vaccin oxy	1
Scorp scorp	216	Carex pancl	031	Glyceria not	078	Poa prat	125	Valeria offic	1
Sphag fimb	217	Carex pulica	032	Hippuris	080	Poa triv	126	Veron an-aq	1
Sphag angus	218	Carex ros	033	Holcus Ian	081	Polygala serp	127	Veron becca	1
Sphag capil	241	Carex brach	034	Hydrocot vul	082	Polygo amph	128	Veron caten	1
Sphag cusp	219	Carex oed	035	Hyperic elod	083	Polygo hydro	129	Veron scutel	1
Sphag dent	220	Carex virid	036	Hyperic tetrap	084	Potamo berc	131	Vicia cracca	1
Sphag fallax	221	Cent nigra	037	Hypoch rad	085	Potamo color	132	Viola pal	1
Sphag pal	222	Cerast font	038	Iris psuedo	086	Potamo crisp	133	Algae	2
Sphag papil	223	Chara spp	039	Juncus acuti	087	Potamo lucen	134		+-
Sphag recurv	224	Cicuta viro	040	Juncus artic	088	Potamo obtus	135		4

Appendix 8. Hydrochemistry data from water samples taken on sites during the Monaghan Fen Survey 2007. Monaghan Fen Survey 2007

Zinc	ua/l	2.4	5.7	31.2	8.1	8.2	5.3	263.1	9.3	1.9	<	36.8	11.8	v	v	Ź	Ý	v	2.1	14.9	< ۲	11.5	5.7	19.2	Ý	7.3	<	5.1	v	5.5	v	<	<u>۲</u>	<u>۲</u>	Ý	v	<1
Copper	na/l	_	V	7.6	,	Ý	۲	11.2	2.2	2.6	3.3	8.6	v	Ý	v	ŕ	v	v	3.9	4.1	v	Ý	2.6	2.3	v	6.4	2.9	v	4.1	2.5	3.4	2.9	۲	Ý	v	5.9	2.1
esənegneM	ua/l	18	34.9	230.5	17.1	58.2	110.6	8867.1	18	105.3	18.7	192	226.9	242.7	371	51.3	19.1	40.1	224.7	410.2	97.6	98.3	234.4	603.9	21.4	226	199.6	21.5	11.4	65	154.7	91.8	398.6	231.2	97.5	156	2893.5
Iron	na/l	702.6	1950.8	54616.5	1143.2	1768.6	1802.6	22606.8	699.3	1785.4	94.8	819.8	143.6	169.8	142.3	90.7	135.6	115.1	256.8	2829.2	215.9	155.5	577.9	6737.4	197	507.6	102.2	119.5	173.6	90.2	595.3	658.8	107.5	306.2	312.3	501.2	339
muiboS	n  /bm	00	<5.00	<5.00	<5.00	<5.00	<5.00	6.49	<5.00	5.13	7.38	8.57	6.64	6.13	11.42	6.94	6.4	7.03	9.97	<5.00	7.35	<5.00	<5.00	6.41	6.54	<5.00	11.24	9.8	14.4	7.72	9.16	19.04	10.69	9.9	5.05	7.51	6.19
Potassium	ma/l		Ý	Ý	</th <th>&lt;1</th> <th>&lt;</th> <th>5.21</th> <th>2.98</th> <th>&lt;1</th> <th>4.23</th> <th>0.97</th> <th>3.57</th> <th>v</th> <th>10.82</th> <th>-</th> <th>1.36</th> <th>0.98</th> <th>11.24</th> <th>7.86</th> <th>2.72</th> <th>1.85</th> <th>&lt;1</th> <th>1.82</th> <th>2.14</th> <th>&lt;</th> <th>4.72</th> <th>3.08</th> <th>2.49</th> <th>2.06</th> <th>4.23</th> <th>1.62</th> <th>2.76</th> <th>2.14</th> <th>۲,</th> <th>2.77</th> <th>1.32</th>	<1	<	5.21	2.98	<1	4.23	0.97	3.57	v	10.82	-	1.36	0.98	11.24	7.86	2.72	1.85	<1	1.82	2.14	<	4.72	3.08	2.49	2.06	4.23	1.62	2.76	2.14	۲,	2.77	1.32
ิ แม่รอกยุ _ธ พ		66	0.97	1.78	V	~	٨	10.92	1.22	1.64	2.45	2.63	2.74	3.04	5.02	4.28	3.68	4.91	5.01	1.34	5.13	3.1	3.34	4.57	2.24	2.1	8.78	8.27	7.18	1.01	2.03	1.92	3.64	3.42	2.7	2.36	3.45
muiolsO	ma/l Ca ma/l	<5.00	<5.00	6.21	<5.00	<5.00	<5.00	65.3	<5.00	8.24	19.38	10.52	14.11	37.17	104.98	61	79.95	61.44	71.39	59.88	79.53	68.75	81.66	66.58	14.49	12.84	66.56	74.79	76.26	<5.00	17.23	5.48	22.67	24.3	22.5	20.71	22.12
ətshqluS	mg/l SO4 n	-	1.2	2	<1.0	1.6	1.2	75.8	13.5	3.2	8	14.7	7.3	4	1.6	14.8	12.4	15	93.3	5.5	26.4	1.7	4.1	2.1	4.8	4	1.6	1.5	2.9	<1.0	6	2.7	2.6	2	2.7	2.1	5.7
Alkalinity کالاھ	mg/l CaCO r 3	<12	<12	<12	<12	<12	<12	25	141	20	55	15	40	98	324	172	220	162	126	152	224	178	218	217	47	32	200	218	196	14	41	<12	66	82	77	67	80
Hq		5.7	5.2	6.4	4.5	7.6	5.1	6.6	5	6.5	7	5.3	6.1	6.6	7.1	8.1	8.2	7.8	7	6.7	8	7.2	7	6.9	6.6	9	6.60	6.5	6.5	4.9	6.9	5.8	6.2	6.4	6.7	6.3	6.3
Electrical Conductivity	µS/cm @25C	48	50	57	47	127	44	248	59	87	194	122	141	239	630	382	465	386	487	315	519	381	433	393	140	103	460	455	482	73	180	171	210	215		174	
Ortho-Phosphate	ma/I P	<0.02	<0.02		v		v		0.02		0.02		-		0.03	<0.02	<0.02	0.02	<0.02		<0.02	0.06	0.1	0.05							0.18	0.03				0.08	
Potal Phosphorus	ma/l N ma/l P	<0.010	0.073	0.104	0.181	0.021	0.024	1.13		0.043	0.153	0.475	0.137	0.08	0.186	0.022	<0.010	<0.010	0.923	0.502	0.069	0.143	0.194		0.191	0.483	0.35	0.321	0.476	0.962	0.253	0.231		0.172			0.089
Total Oxidised Nitrogen	ma/l N	<0.05		<0.05	<0.05	<0.05		<0.05	<0.05	<0.05	0.13									<0.05	<0.05			<0.05							<0.05	<0.05					<0.05
sinommA	mg/l N	0.08	0.05	0.12	0.04	0.06	0.05	0.78	0.2	<0.03	0.04				0.11	0.09	0.11	0.1	0.11	0.63	0.08	0.12	0.14	<0.03							0.19	0.06	0.04	0.32	0.04	0.13	0.03
Fen Type		TMP	ЧЧ	ЧЧ	ЪF	ΡF	ΡF	AF	ΡF	TMP	TMR	TMP	TMR	Цd	AF	AF	AF	AF	TMP	TMR	AF	TMR	TMR	MSH	TMP	TMP	TMR	ЪР	TMR	ЪF	TMR	ΡF	TMR	TMR	MSH	TMP	TMR
Peat Depth (cm)		5 >200	>200		5 >200	0 >200		>200	5 >200	>200	>200	N/A	>200	>200		) >200	5 >200	>200	) >200		09 (	>200	>200		>200		>200	) >200	>200	5 >200	120	180			0 >200	0 >200	200
ness Water Table Depth (cm)		7 -5	0 0		4 5	12 C		7 -10	2 -5	15 0	13 0	18 0	7 0	18 -10	16 0	13 -20	7 -15	1 -10	11 -10	18 -10	2 -20	2 0	23 0	7		11 10	19 0	26 -20	7 0	14 -5	18 0	18 0	12 C	16 C	15 C		19 0
Species Rich		17	Ñ	30		1	1	37	22	1	1	1	17	÷		÷	17	21	ŀ	-	22	22	2	12	<del>, ,</del>	-	1	Ñ	17	÷	1	1	-	-	<del>,</del>	<del>,</del>	~
Releve Code Number		1603(2)-R1	1603(2)-R2	1603(4)-R1	1603(4A)-R1	1603(5)-R1	1603(5)-R2	1603(6)-R1	1603(6)-R2	1603(9)-R1	1606-R1	1607-R1	1607-R2	1781-R1	1786-R1-Dum	1786-R1-Kill	1786-R1-Sum	1786-R2-Kill	1836-R1	1837-R1	1839-R1	1840-R1	1840-R2	2077-R1	2732-R2	2732-R4	2755-R1	2755-R2	2755-R3	2755-R4	2893-R1	2893-R2	2896-R1	2896-R2	2897-R1	2901-R1	2902-R1
Site Name		ESHBRACK BOG	ESHBRACK BOG		ESHBRACK BOG					ESHBRACK BOG	Н		LOUGH SMILEY	LISARILLY BOG	KILROOSKY LOUGH CL. 1		KILROOSKY LOUGH CL. 1	KILROOSKY LOUGH CL.		MULLAGLASSAN LOUGH			DG			DRUMGALLAN BOG		KILLYNEILL FEN	KILLYNEILL FEN	KILLYNEILL FEN	LISNALEE FEN	LISNALEE FEN				N FEN	AGHACLOGHAN FEN 2
EPA Sample Code		1603 5	1603_6	1603_3	1603_4	1603_1		1603_8	1603_9	1603_7	1606_1	$1607_{1}$	1607_2	$1781_{-1}$	1786_4	1786_2	$1786_{5}$	1786_3	1836_1	1837_1	1839_1	$1840_{-}1$	1840_2	2077_1	$2732_{-1}$	2732_2	$2755_{-1}$	2755_2	2755_3	2755_4	2893_1	2893_2	$2896_{-1}$	2896_2	$2897_{-1}$	$2901_{-1}$	2902_1

Zinc	l/bri	21.8	-	<u>ر</u>	31.8	20.2	4.3	5.9	<	v	8.8	63.9	26.8	29.1	۲	-	4.7	<	<	6.1	Ý	۲	۲	<ul> <li></li> </ul>	5.6	5		-		263.1	20.33		44 92
Copper	1 l/br	+	3.7	6.6	5.6	2.7	2.5	۲	<1	۲ ۲	۷	20.2	5.5	6.5	٢	4.4	v	<	3.6	v	۲	۲	۲	۲	2.4	2.5		2.1		20.2	4.80		3 58
asənsgnsM	l/gu	20.6	307.6	51.3	3053.7	6179	235	41.7	65.4	1090.2	1298.6	11359	173.9	226.1	972.2	66.6	23.2	511.6	4.1	199.7	15.4	97.8	372.2	1122.5	583.2	679.5		4.1		11359	772.27		1989.3
Iron	l/6rl	85.7	315.9	67.1	2386	786	438.8	180.9	383.9	2361.9	3978.8	1892.1	1973.6	4257.8	1733.5	389	107.3	295.5	139.6	623.3	168	1076.6	316.3	783.2	405.4	2510		67.1		54616.5	2154.54		7470.85
muiboS	1 l/gm	10.95	8.7	7.65	6.31	6.51	6.91	8.19	6.17	5.17	6.3	5.97	5.73	<5.00	12.08	5.09	6.69	8.65	8.05	8.46	18.09	6.53	7.08	7.9	6.51	6.54	-	5.05		19.04	8.15		2 Q5
Potassium	mg/l	5.5	2.1	1.28	1.73	1.42	<1	1.44	<1	1.93	3.39	2.66	4.38	5.64	1.65	3.85	^1	<1	<1	1.25	<۲	2.27	1.21	1.5	1.66	2.97		0.97		11.24	3.04		2 309
muisənpsM		3.72	2.06	2.98	3.68	3.56	3.12	2.79	1.96	3.3	3.5	4.67	1.59	1.66	6.16	1.77	4.7	4.94	4.5	5.28	3.55	1.64	3.55	3.77	6.75	3.41		0.97		10.92	3.56		1 982
muioleO	mg/l Ca mg/l	11.57	19.04	25.43	25.41	22.73	10.56	9.33	7.26	104.46	14.47	39.08	<5.00	<5.00	84.62	17.32	69.56	94.7	73.35	84.2	28.67	15.88	21.56	10.4	25.08	11.91	1	5.48		104.98	40.44		30 548
ətshqluS	mg/l SO4 n	41.8	14.4	6.5	7.9	3.5	4.8	5.6			5.3	14.6	3.7	2	13.4	4	1.9	13.6	41.7	7.3	2.1	1.7	8.4	10.5	10	6.1		1		93.3	10.01		16.378
Alkalinity کالا	mg/l CaCO r 3 3	21	41	65	80	94	31	33	24	278	66	142	32	20	240	47	184	260	166	242	100	45	68	44	86	57	:	14		324	110.61		87 68
Hq	200	9	9	6.9	6.4	6.5	6.7	7.8	7.7	6.9	6.5	6.6	5	5.1	7.1	6.3	6.8	7.3	7.1	7.1	7	6.3	6.2	6.2	6.5	6.3		4.5		8.2	6.52		80
Electrical Conductivity	µS/cm @25C	208	185	207	184	210	119	371	91	573	165	315	79	80	470	149	406	531	446	516	274	150	183	149	217	129		44		630	250.44		159.9
Ortho-Phosphate	mg/I P	<0.02	<0.02	<0.02	<0.02	<0.02				0.24	<0.02	<0.02	<0.02	0.02	0.25	0.03		0.18	0.02	<0.02	<0.02	0.05	<0.02	<0.02		<0.02		0.02		0.25	0.07		0 075
Phosphorus Total	mg/l P		0.277	0.076	0.338	0.114	0.21	0.125	0.09	0.325	0.147	0.619	0.599	0.971	0.457	0.26	<0.010	0.173	0.329	0.019	0.247	0.359	0.127	0.096	1.234	0.145		0.019		1.234	0.29		0 2782
Total Oxidised Nitrogen	mg/l N	<0.05	<0.05	<0.05	<0.05	<0.05					<0.05	<0.05	<0.05	<0.05	<0.05	<0.05			<0.05	2.12	<0.05	<0.05	<0.05	0.41		<0.05		0.13		2.12	0.89		1 077
sinommA	l/gm N	0.07	0.63	<0.03	0.19	0.58				0.3	0.4	0.75	0.29	0.13	0.18	0.09		0.27	0.09	0.03	<0.03	0.31	0.13	1.49		0.2		0.03		1.49	0.23		0 279
Fen Type		TMP	TMR	TMR			TMR	TMP	TMP	TMR	TMR	TMP	ΡF	ΡF	TMR																		
Peat Depth (cm)		>200	>200	>200	>200	>200	>200		>200	>200	80	100	30	40	40													30		200	90.00		57 R
Depth (cm) Depth (cm)		0	0 (	9 0	0 (	ŗ	35		0 (	3 -15	0	3 0	3 -5	9 -20	3 -15																		
Species Rich sess		12	20	16	29	27	23	11	19	18	21	18	16	19	23																		
Releve Code Number		2903-R1	2904-R1	2904-R2	2911-R1	2911-R2	MFS01-R1	MFS04-R1	MFS04-R2	MFS05-R1	MFS06-R1	MFS07-R1	MFS07-R2	MFS07-R3	MFS08-R1	NA	NA	NA	IA	NA	NA	NA	NA	NA	NA	NA							
<u> </u>		2																:				N FEN											
Site Name		DUNAREE FEN	<b>AGHNAMULLEN FEN</b>	AGHNAMULLEN FEN	LISINISKY MARSH	LISINISKY MARSH	CORNAGLARE LOUGH	<b>CRUMLIN LOUGH</b>	<b>CRUMLIN LOUGH</b>	1 MORGANS LOUGH	<b>BOCKS UPPER</b>	<b>CRINKILL LOUGH</b>	<b>CRINKILL LOUGH</b>	<b>CRINKILL LOUGH</b>		RAFINNY LOUGH	<b>LISARILLY BOG</b>	KILROOSKY LOUGH CL	ANNAGHEANE LOUGH	NAFARTY FEN	<b>GREAGHGLAS FEN</b>	<b>CORAVILLA - RAKEEN FEN</b>	AGHACLOGHAN FEN	DUNAREE FEN	CORNAGLARE LOUGH	<b>BOCKS UPPER</b>							
EPA Sample Code		$2903_{1}$	$2904_{-1}$	2904_2	2911_1	2911_2	MFS1_1	MFS4_1	MFS4_2	MFS5_1	MFS6_1	MFS7_1	MFS7_2	MFS7_3	MFS8_1	1606_2	1781_2	1786_1	1836_2	$2077_2$	2897_2	2901_2	2902_2	2903_2	MFS1_2	MFS6_2	MINIMU	VALUE	MAXIMU M	VALUE	AVERAG E	Standar	d Deviatio n

# Environmental Protection Agency, Regional Inspectorate, The Glen, Monaghan

The laboratory is accredited by the National Accreditation Board for a range of tests on water and wastewater samples. The laboratory's Scope of Accreditation is available on request.

The following information is provided to assist in the interpretation of this test report. For Specification limits refer to those values set out in Integrated Pollution Control licences, Local Authority licences and other legislative requirements.

The table below lists the parameters currently accredited by the NAB.

The table also gives the units of measurement, the Limit of Quantitation (LOQ), the Maximum Uncertainty of the analysis and our Laboratory Method Reference No. for each parameter.

Parameter	Units of Measurement	Limit of Quantitation	Maximum Uncertainity (95%, K=2)	Laboratory Method Reference No.
BOD	mg/l O2	1.5	± 18%	B.2
pH	pH units		± 0.2 *	B.7
Conductivity	µS/cm	9	±1%	B.4
Hardness	mg/l CaCO3	9	±2%	B.6
Alkalinity	mg/1 CaCO3	12	±2%	B.9
Chemical Oxygen Demand	mg/l O2	4	± 5%	B.3
Ammonia	mg/l N	0.03	±7%	B.1
Total Oxidised Nitrogen	mg/l N	0.05	± 4%	B.1
Nitrite	mg/1 N	0.003	± 6%	B.1
o-Phosphate	mg/l P	0.02	± 7%	B.1
Chloride	mg/1 Cl	1	± 7%	B.1
Fluoride	mg/l F	0.15	± 10%	B.10
Sulphate	mg/l So4	1	± 2%	B.10
Suspended Solids	mg/l	5	± 13%	B.8
Total Dissolved Solids	mg/l	23	± 5%	B.11
Residue on Evaporation	mg/l	23	± 6%	B.11
Colour	mg/l Pt/Co	5	± 6%	B.12
Total Suspended Solids	mg/l	5	± 12%	B.13
Turbidity	NTU	0.5	± 15%	B.14
TOC	mg/l C	1.5	± 9%	B.16
Chloroform	μg/l	0.2	± 10%	B.15
Benzene	μg/1	0.2	± 10%	B.15
Bromodichloromethane	μg/1	0.2	±10%	B.15
Dibromochloromethane	μg/l	0.5	±10%	B.15
1,2-dichloroethane	μg/1	0.2	±10%	B.15
Tetrachloroethene	μg/1	0.3	±10%	B.15
Trichloroethene	μg/l	0.2	±10%	B.15
Bromoform	μg/l	0.3	±10%	B.15

Note: For most tests, the Analytical Performance testing was carried out at low, mid-range and the upper end of the analytical range and the Uncertainty values were initially calculated from this data (based on precision and bias). This data is available from the laboratory on request.

Following the initial Performance testing the Uncertainty of measurement will be reviewed on an annual basis using results obtained from in-house duplicate results (precision) and in-house QC results (bias). When reviewing the data if there are significant changes, then the Uncertainty values for the tests in question will be updated accordingly.

In the table above the % Expanded Uncertainty is quoted for each test with the exception of pH, which is quoted in pH units ie. pH result  $\pm 0.2$ 

Monaghan Fen Survey 2007 Appendix 9: Conservation evaluation of sites surveyed on the Monaghan Fen Survey 2007. Rating value: High - 5; Medium - 3; Low - 1; None - 0 Maximum possible score 75

noiniqo †19qx∃	0 = site has no value for conservatio n; 5 = site has high value for conservatio n n	3	Э	1	3	3	1	3	1	3	S	e	S	3	З	3	З	3	3	3	5	3	5	5	5	e	5	5
Intrinsic appeal	0 = no 0 = no scenic/land scape high scenic/land scenic/land scene scape appeal	1	Э	3	1	1	3	1	1	3	3	С	3	3	3	3	3	3	3	5	3	3	5	5	5	5	5	5
tnəməgeneM needs	0 = Site requires major manageme nt / restoration initiatives; 5 requires requires fitte or no change in current manageme	0	3	1	1	1	1	1	1	3	3	Э	1	1	1	1	3	3	5	3	1	3	3	3	5	3	1	3
Educational value	0 = no educational value: 5 = highly suitabily suitational site	0	0	3	0	0	0	0	0	1	0	3	1	1	3	0	1	1	0	1	3	1	0	1	1	0	5	3
Recorded history	0 = no previous research; 5 = extensive site information available	0	0	1	1	1	1	1	3	0	3	0	1	1	1	3	0	3	3	1	3	3	3	0	5	3	5	5
γilidsiV	0 = site not unviable; 3 = viable but only with manageme nt measures; 5 = site viable	1	3	9	1	0	5	3	3	3	8	3	9	3	8	3	8	3	5	5	5	5	5	9	9	9	8	5
Rarity - Habitats	0 = no habitats of note recorded; 5 = rare habitat of note confirmed on site	1	1	0	1	1	1	1	3		1	1	1	3	3	3		5	3	3		3	3		8	2	2	
Rarity- Species	0 = no species of note recorded; 5 = rare species of note confirmed on site	0	0	0	0	3	0	0	1	0	1	0	0	1	1	2	0	0	1	0	3	5	0	0	1	2		с С
ənlav nəf	0 = no fen habitats present; 5 = good quality fen habitats present	9	0	0	3	L	1	3	0	3	£	0	£	5	8	0	8	0	3	9	0	5	0	5	5	9	8	5
Diversity	0 = poor habita / species diversity: 5 = excellent habitat / species diversity	١	1	8	1	3	3	3	1	3	Е	5	9	3	9	8	8	5	3	5	1	3	5	9	9	9	8	5
əziS	0 = Site too small to be viable, 5 = site size large and viable	3	1	3	3	3	3	1	3	3	3	5	5	5	3	3	5	5	3	5	5	5	5	5	1	3	5	5
Typicality	0 = habitat not representati ve; 5 = ve:5 = exemple of habitat	3	3	1	3	1	1	3	3	3	3	3	3	3	3	3	3	3	5	3	3	3	5	5	5	5	3	5
Potential value	0 = no improveme int possible/ close to tiss maximum potential; 5 = significant int possible/ site not at its maximum	3	1	1	3	3	1	3	3	1	3	1	1	3	3	3	3	1	1	3	3	1	1	1	1	3	5	3
Non-recreatability	0 = easy to re-create; 5 = difficult to re-create	3	3	8	3	3	3	3	3	5	8	3	8	3	9	2	9	5	5	3	5	3	5	9	9	9	5	5
ssənlarutaN	0 = high disturbance 5 = no or minimal disturbance	3	с	L	3	3	3	3	3	3	Е	5	5	3	3	2	3	3	3	3	3	3	5	8	ε	3	9	5
Total Site Score		25	25	26	27	27	27	29	29	37	38	38	40	41	43	43	43	43	46	48	48	49	50	51	55	58	61	67
Ranking		+ 0	+ 0	+ 0	+ C	+ C	+ C	+ C	+ C	В	В	В	В	В	В	В	В	В	В	В	A	В	В	В	В	В	۷	A
əbo <b>D ə</b> ji2		002901	002897	002614	<b>MFS-05</b>	001836	<b>MFS-04</b>	002911	001841	<b>MFS-08</b>	001837	<b>MFS-02</b>	MFS-01	002755	001607	001835	MFS-07	001784	001606	001840	002531	002732	001785	002904	001781	001839	001603	001786
	Site Name/ Scoring System Applied	CORAVILLA - RAKEEN FEN	GREAGHGLAS FEN	PRIESTFIELD LOUGH	MORGANS LOUGH	ANNAGHEANE LOUGH	CRUMLIN LOUGH	LISINISKY MARSH	DRUMCOR LOUGH	KILLYCOOLY LOUGH	MULLAGLASSAN LOUGH	DRUM LOUGH	CORNAGLARE LOUGH	KILLYNEILL FEN	LOUGH SMILEY	LISABUCK LOUGH	CRINKILL LOUGH	ROSEFIELD LAKE AND WOODLAND	RAFINNY LOUGH	LISLANNAN BOG	MOYLAN LOUGH	DRUMGALLAN BOG	MULLAGHMORE LAKE (SOUTH)	AGHNAMULLEN FEN	LISARILLY BOG	ΚΙΓΓΛΛΙΓΓΛ ΓΟΛΘΗ	ESHBRACK BOG	KILROOSKY LOUGH CLUSTER

Monaghan Fen Survey 2007 Appendix 9: Conservation evaluation of sites surveyed on the Monaghan Fen Survey 2007. Rating value: High - 5; Medium - 3; Low - 1; None - 0 Maximum possible score 75

	se o o c c o	0	0	~	~	~	-	~	-	~	~	З	З	~	З	З
Expert opinion	0 = site has no value for conservatio n; 5 = site has high value for conservatio n															
Intrinsic appeal	0 = no scenic/land scape appeal: 5 = high scenic/land scape appeal	0	0	1	1	0	1	1	1	L I	1	L I	1	1	0	1
fnəməgeneM sbəən	0 = Site requires major manageme nt / restoration initiatives; 5 = site requires little or no change in current manageme	0	0	0	0	0	0	0	0	0	1	0	1	1	0	1
eulev lenoiteoub∃	0 = no educational value: 5 = highly suitable educational site	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Recorded history	0 = no previous research; 5 = extensive site information available	0	1	1	0	0	1	1	1	0	0	0	0	0	0	0
Visibility	0 = site not unviable; 3 = viable but only with manageme nt meaures; 5 = site viable	0	0	0	1	1	1	1	1	1	3	1	1	3	1	1
Rarity - Habitats	0 = no habitats of note recorded; 5 = rare habitat of note confirmed on site	0	-	0	1	1	1	1	1	1	1	1	1	1	5	1
Rarity- Species	0 = no species of note recorded; 5 = rare species of note on site	0	~	1	1	0	1	0	0	0	0	0	0	3	0	0
ənlsv nə٦	0 = no fen habitats present; 5 = good quality fen habitats present	0	0	0	1	1	1	1	0	0	0	1	3	0	0	3
Diversity	0 = poor habitat / species diversity: 5 = excellent habitat / species diversity	0	1	1	1	1	1	1	1	3	0	1	3	3	3	1
əziS	0 = Site too small to be viable; 5 = site size large and viable	0	0	0	0	1	1	1	3	3	3	3	1	3	1	3
Typicality	0 = habitat not representati ve; 5 = ve; 5 = example of habitat	1	~	0	1	1	1	1	1	1	1	1	3	1	3	3
Potential value	0 = no improveme close to its maximum potential: 5 = significant improveme nt possible/ site not at its not at	1	-	1	0	1	1	1	3	1	3	3	1	1	3	3
Non-recreatability	0 = easy to re-create; 5 = difficult to re-create	0	0	1	0	0	1	3	1	3	1	1	3	3	3	3
ssənlarutaN	0 = high disturbance ; 5 = no or minimal disturbance	-	0	0	0	1	1	٦	1	1	3	3	٦	٦	٦	1
Total Site Score		З	9	7	8	6	13	14	15	16	18	19	22	22	23	24
Ranking		ш	ш	ш	ш	ш	D		D		Δ		J	υ	U	C
sbo <b>J s</b> ite		002895	001780	001782	002903	002893	002077	002899	002900	002898	002894	002896	002902	MFS-03	002892	MFS-06
	Site Name/ Scoring System Applied	OSSY CROSS FEN	ALLAGESH LOUGH NHA	KILLYHOMAN MARSH NHA	DUNAREE FEN	LISNALEE FEN	NAFARTY FEN NHA	KILNACLAY FEN	AGHABOY FEN	GRAFFAGH AND CORINSHIGO FEN	TIRAGARVAN FEN	LISQUIGNY (CORLONGFORD) FEN	AGHACLOGHAN FEN		SHEETRIM FEN	BOCKS UPPER

#### Monaghan Fen Survey 2007

Appendix 10. List of sites in County Monaghan surveyed as part of the Monaghan Fen Survey 2007 where dumping and infill were noted.

Site Name & Code	Grid Reference	Date Site Surveyed	Site Status	Type of damage	Threat to overall site from dumping
					(Some Moderate; Severe)
Aghaboy Townland Marsh 2900	H 626 350	31 May 2007	Undesignated site	Infilling with soil/building waste;	Moderate
Aghacloghan 2902	H 802 089	24 May 2007	Undesignated site	Infilling with soil/building waste	Moderate
Annagheane 1836	H 469 181	30 May 2007	Designated NHA	Infilling with soil/building waste; numerous abandoned vehicles; within NHA boundary	Moderate
Ardkirk MFS03	H 872 144	5 June 2007	Undesignated site	Infilling with soil/building waste; Disposal of household, farm, garden waste	Severe
Bocks Upper MFS06	H 794 091	8 June 2007	Undesignated site	Infilling with soil/building waste	Some
Coravilla - Rakeen Fen 2901	H 648 241	23 May 2007	Undesignated site	Infilling with soil/building waste	Moderate
Crumlin Lough MFS04	H 642 330	28 May 2007	Undesignated site	Infilling with soil/building waste	Moderate/Se vere
Drumcor Lough 1841	H 481 175	30 May 2007		Infilling with farmyard / mushroom compost waste & plastic; within NHA	Some
Drumgallan 2732	H 810 283	27 May 2007	Designated NHA Candidate NHA	boundary Disposal of household,	Some
Killy Lough	H 63 42	11 June 2007	Undesignated site	farm, garden waste Infilling with soil/building	Moderate/Se
Killyneill 2755	H 730 354	25 May 2007	Candidate NHA	waste Infilling with soil/building waste; Disposal of household, farm, garden waste	vere Moderate/Se vere
Kilnaclay Fen 2899	H 632 303	28 May 2007	Undesignated site	Infilling with soil/building waste	Some
Lisabuck 1835	H 502 230	30 May 2007	Designated NHA	Infilling with soil/building waste; on field adjacent to wetland but within NHA	Some
Lisinisky Marsh 2911	H 706 096	8 June 2007	Undesignated site	boundary. Infilling with soil/building waste; Disposal of household, farm, garden waste	Severe
Lisquigny Fen 2896	H 732 267	25 May 2007	Undesignated site	Infilling with soil/building waste; Disposal of household, farm, garden waste	Some
Lough Smiley 1607	H 82 21	27 May 2007	Designated NHA	Infilling with soil/building waste; Disposal of household, farm, garden waste	Severe
Nafarty Fen 2077	H 837 045	5 June 2007	Designated NHA	Infilling with soil/building waste;	Moderate
Rafinny Lough 1606	H 618 263	23 May 2007	Designated NHA	Infill area of hardcore to create a boat jetty (?)	Moderate
Sheetrim Fen 2892	H 679 315	22 May 2007	Undesignated site	Infilling with soil/building waste	Severe
Tossy Cross 2895	H 769 154	24 May 2007	Undesignated site	Infilling with soil/building waste; Disposal of household, farm, garden waste	Some

Monaghan Fen Survey 2007 Appendix 11. List of fens in County Monaghan with a cross-border component where conservation designations require harmonisation

	VIHA as but ind he be be be	ate east	
Recommendation	Recommend that the NHA in ROI be designated as SAC for blanket bog, but also Transition Mire. A section of the bog around Lough Naheery in NI has no designation, while the section of lake in ROI is in NHA. NI section of lake and bog catchment should be included in extension of SAC.	DOE NI should designate the northern side of Dummys Lough as at least an ASSI.	Magheraveely Lough should be designated as an
Cross border issue	Area of blanket bog in NI which Recommend that the NH is contiguous in many parts with in ROI be designated as that in the ROI has been designated as an SAC in NI. Blanket bog areas and cross border lakes in ROI of the same Lough Naheery in NI has quality. SAC is not also around be included in extension of sAC.	Within the Kilroosky Loughs Cluster SAC (ROI) Dummys Lough in ROI which is designated as an SAC has no conservation designation in NI.	Killyvilly Lough is designated as Magheraveely Lough a NHA in the ROI but the should be designated
Site Name and Conservation Status NI	SLIEVE BEAGH, SAC / ASSI	MAGHERAVEELY MARL LOUGHS, SAC (Kilroosky Lough ASSI, Burdauntien Lough ASSI, Summerhill Lough ASSI, Knockballymore Lough ASSI)	MAGHERAVEELY MARL LOUGHS, SAC
Site Code NI	UK0016622	SAC009 (ASSI078, ASSI081, ASSI080, ASSI014)	SAC009
Site Name and Conservation Status ROI	ESHBRACK BOG, NHA	KILROOSKY LOUGH CLUSTER, SAC (Kilroosky, Burdauntien, Ramages, Summerhill and Dummys Loughs)	KILLYVILLY LOUGH, NHA
Site Code ROI	001603	001786	001839

Monaghan Fen Survey 2007 Appendix 11. List of fens in County Monaghan with a cross-border component where conservation designations require harmonisation

Site Code	Site Name and	Site Code NI	Site Name and	<b>Cross border issue</b>	Recommendation
ROI	<b>Conservation Status ROI</b>		<b>Conservation Status NI</b>		
002732	DRUMGALLAN BOG, Undesignated	ASSI182	DRUMCARN, ASSI	The extension of the Drumgallan Drumgallan Bog in ROI site into NI has been designated as a an ASSI. The northern site has NHA. Recommend Marsh recorded 14 species of butterfly Fritillary (Euphydryas including the nationally rare aurinia) Survey of ROI site and possible designation o aurinia). The site is listed as an possible to Marsh Fritillary in Northern Ireland.	Drumgallan Bog in ROI should be designated as a NHA. Recommend Marsh Fritillary (Euphydryas aurinia) Survey of ROI site and possible designation of site as SAC should this species be recorded in significant numbers.
001840	LISLANNAN BOG, NHA	۲ ۷	NONE	Lislannan Bog is a designated Sections of Lisla NHA in the ROI. Contiguous in NI should be of sections of the site in NI have no for conservation designation, making effective designation. conservation difficult.	Sections of Lislannan bog in NI should be considered for conservation designation.

# Appendix 12: Additional Data Fields and Layouts included in the NPWS Fen Survey Database

As part of the Monaghan Fen Survey data collected on sites was stored within a Filemaker Pro database which was originally created as part of the NPWS Fen Study (Foss 2007). To accommodate additional information collected during this field survey, and future surveys, a number of new data fields were created which are presented in four layouts (see Figure 1 to 4 below). The new data fields, their data contents and the layouts in which they occur are described here.

In the description of the additional fields added to the NPWS Fen Survey database, the respective data entry or display field (shown in bold lettering below) is the field title seen on the main NPWS Fen Study database when accessed in browse mode (used to scroll through records, edit records and create new site records).

The technical field name within the database (shown <u>underlined and in brackets</u>) is displayed when the database is viewed in layout mode (used when altering field names, layouts, sorting records or exporting data, for example, to Excel spreadsheets).

Within the database the fields are arranged in a series of layouts. Layouts which formed part of the original database (see NPWS Fen Study, Foss 2007 for further details) include:

Title layout - opening or title page of database

Main Layout - includes key Site Details

Habitats Recorded - includes a list of Fen Habitats present or possibly present on each site; using the classification system adopted in this NPWS Fen Study (Foss 2007) together with various other workers fen classification systems; and other significant non-fen habitats present

NPWS Fen Study Area Information - includes a list of 6 Fen Habitats present or possibly present on each site as adopted by the NPWS Fen Study and the area of each in hectares

Species Information - includes information on rare or noteworthy Flora and Fauna

Summary Published Information/Surveys on site - includes date when site was most recently surveyed, and who undertook the survey; together with a list of publications, reports etc. that include information on the site

Site Evaluation - includes evaluation of the site based a variety of criteria

Data sources various - includes information on the site from this study and other sources including IPCC; NPWS Pat Warner database etc.

Additional Layouts created to accommodate field survey data from the Monaghan Survey include:

Survey Findings Home layout – basic introduction to the different survey results layouts described below which occur within the database, providing an indication of where data obtained from the field survey is to stored or updated.

General Survey Results - includes Site survey details including Geology, Quaternary deposits, River Catchment, Townlands, Survey date, and Photographic, Relevé and Water Chemistry sample numbers.

Site Report Section - includes a summary and detailed site description based on the field survey with particular reference to fen interest on the site. This layout also includes a Note section where site observations made at particular locations on site during the field survey are stored.

Hydrochemistry Results - includes results of the water sample analysis collected during the field survey.

Printable Site Report layout - a printable site description layout which includes all relevant site data collected during the survey.

The layouts can be accessed by clicking the appropriately named button on the Main Layout (and subsequent layouts) within the database window.

Within the NPWS Fen Survey database fields are colour coded as follows:

Data fields, when they first appear (and are to be filled) are colour coded in pale green; Data fields that are repeated in a second or subsequent layout are colour coded in pale blue; Data fields that are created from calculations; or automatically created when a site record is created etc. are colour coded in pink.

A copy of the NPWS Fen Survey database for County Monaghan sites can be found on the CD attached to inside back cover of this report. Additional copies of the Monaghan and entire database are held with NPWS Research section, Dublin.

# Data fields added to the NPWS Fen Survey database to accommodate Monaghan Fen Survey data:

#### Survey Findings Home Layout

No new data fields were added to this layout, which aims to provide the surveyor with guidance on where various field survey data results are to be added to the database.

#### General Survey Results Layout

Main Habitats (Fen survey main habitats)

List of the main habitats recorded on the site, using Fossitt naming system.

Date of survey (Fen survey Date of survey)

Date on which the filed survey was undertaken.

Surveyor Names (Fen survey Surveyor Names)

Names of the surveyors who undertook the fen field survey.

River Catchment (Fen survey River Catchment)

Names of the river catchment in which the site is located.

Townland Names (Fen survey Townlands)

Names of the townland(s) in which the site is located.

Solid Geology (Fen survey solid geology)

Underlying bed rock geology of the site, as indicated in the GIS Solid Geology map of Ireland.

Quaternary Deposits (Fen survey quaternary deposits)

Underlying quaternary deposits of the site, as indicated in the GIS Quaternary Deposits map of Ireland.

Topography (Fen survey topography)

Topographic description of the site location.

Hydrology (Fen survey hydrology)

Hydrological description of the site location, with inflow and outflow observations.

Relevé Numbers (Fen survey releve numbers)

Relevé code numbers of vegetation descriptions taken on the site.

Photographic Numbers (Fen survey photographic numbers)

Photographic code numbers of photographs taken on the site.

Substrate Type (Fen survey substrate type)

Record of the substrate type(s) found on the site, namely Mineral, Mineral Peat Mixture, Peat or Marl.

Peat Depth (cm) (Fen survey peat depth)

Depth of peat (to a maximum of 2 m) recorded on the site (usually at Relevé locations).

Water Sample number (Fen survey water sample number)

Water sample(s) code number(s) taken on the site for subsequent laboratory analysis.

Water table depth (cm) (Fen survey water table depth)

Water table depth recorded at relevé/water sample point on site.

Site rating based on fen survey (Conservation Recommendation following survey)

A rating of the site based on evaluation of all data collected on habitats, threats and damage occurring on the site. Each site was scored on 15 site characters to come up with final rating and conservation recommendation (see Appendix 9 in this report). 6 point rating scale used: A - SAC status recommended; B - NHA status recommended; C + - County conservation status recommended; C - High local conservation value; <math>D - Moderate local conservation value; E - Low local conservation value.

Fen Survey Evaluation (Fen survey evaluation)

Notes on the conservation evaluation undertaken on the site.

Fen Survey Conservation recommendations (Fen survey conservation recommendation)

Notes on conservation or management recommendations made for the site.

Fen Survey Landuse with site boundary (Fen survey landuse within site boundary)

Set of land use options occurring within the site boundary based on the NHA reporting system.

#### Site Report Section Layout

Brief Site Description (Fen survey brief description)

A brief site description with reference to fen interest on the site.

Fen Survey Site Synopsis with Fen interest description (Fen survey site synopsis)

A detailed site description with reference to fen and other habitats on the site, as well as threats and damage.

#### Fen Survey Site Notes (Fen survey site notes)

Note section with site observations made at particular locations on site during the field survey. Locations of notes within the site are indicated on the six inch map which forms part of the full site report (see Appendix 1, this report).

#### Hydrochemistry Results Layout

#### Field Survey pH reading (Fen survey site pH range field)

Water pH recorded with pH meter during the field survey or immediately following the field survey on return to the laboratory.

Data fields for Hydrochemical analysis of water samples, for chemical elements or water parameters including:

Alkalinity mg/I CaCO3; (Fen survey site alkalinity range) Ammonia mg/I N; (Fen survey site ammonia range) Calcium mg/I; (Fen survey Calcium) Conductivity uS/cm; (Fen survey site conductivity range) Copper mg/I; (Fen survey copper) Iron mg/I; (Fen survey iron) Magnesium mg/I; (Fen survey magnesium) Manganese mg/I; (Fen survey manganese) Ortho-Phosphate mg/I; (Fen survey site ortho phosphate range) pH (laboratory measurement); (Fen survey site pH range laboratory) Potassium mg/l; (Fen survey potassium) Sulphate mg/I; (Fen survey sulphate) Sodium mg/I; (Fen survey sodium) Oxidised Nitrogen mg/I; (Fen survey site nitrogen range) Total Phosphorus mg/I; (Fen survey total phosphorus) Zinc mg/l; (Fen survey zinc)

Survey of the Extent and	d Conservation Status of Fens in Ireland
Record No. 608	Modification Timestamp 7/28/2007
	bitat Area mation Information Summary Published Info/Surveys on site Site Threats
	dditional youts list Command Options Conservation Recommendation
NPW	/S Fen Survey Results
SAC/NHA Site Name	SARILLY BOG
SAC/NHA Site Code	001781
Total SAC/NHA Site Area (ha) 9.9	9
Non SAC/NHA Site Name(s) or Subunit name within	
SAC/NHA Complex	
Total Non SAC/NHA Site Area	Total SAC/NHA Subunit Area
	H 581 269 Vice County H32
National Grid Ref E	258146 National Grid Ref N 326900
6" map no. 12 Discovery	map no28A Air photograph no1215A; 1215B
	map no. 28A Air photograph no. 1215A; 1215B Survey Results Entry
	Survey Results Entry
Site	Survey Results Entry
Site Survey Findings Home General Surv	Survey Results Entry vey Results Site Report Section Hydrochemistry Results
Site Survey Findings Home This page General Surv Printable Site Report Layout – Standa Enter Additional Site Survey Inform	Survey Results Entry         rey Results       Site Report Section         Hydrochemistry Results         ard       Printable Site Report Layout – Large Format         mation under General Survey Results layout
Site Survey Findings Home This page Printable Site Report Layout – Standa Enter Additional Site Survey Inform e.g Geology, Quaternary deposits, River Catch	Survey Results Entry         rey Results       Site Report Section         Hydrochemistry Results         ard       Printable Site Report Layout – Large Format         mation under General Survey Results layout         ment, Townlands, Survey date etc.
Site Survey Findings Home This page Printable Site Report Layout – Standa Enter Additional Site Survey Inform e.g Geology, Quaternary deposits, River Catch	Survey Results Entry         rey Results       Site Report Section         Hydrochemistry Results         ard       Printable Site Report Layout – Large Format         mation under General Survey Results layout
Site Survey Findings Home This page Printable Site Report Layout – Standa Enter Additional Site Survey Inform e.g Geology, Quaternary deposits, River Catch	Survey Results Entry         Yey Results       Site Report Section         Hydrochemistry Results         ard       Printable Site Report Layout – Large Format         mation under General Survey Results layout         ment, Townlands, Survey date etc.         Site Notes under Site Report Section layout
Site Survey Findings Home This page General Surv Printable Site Report Layout – Standa Enter Additional Site Survey Inform e.g Geology, Quaternary deposits, River Catch Enter Survey Site Description and Enter Hydrochemistry data under	Survey Results Entry         Yey Results       Site Report Section         Hydrochemistry Results         ard       Printable Site Report Layout – Large Format         mation under General Survey Results layout         ment, Townlands, Survey date etc.         Site Notes under Site Report Section layout
Site Survey Findings Home This page General Survey Printable Site Report Layout – Standa Enter Additional Site Survey Inform e.g Geology, Quaternary deposits, River Catch Enter Survey Site Description and Enter Hydrochemistry data under Enter Site damage and future three	Survey Results Entry         Yey Results       Site Report Section         Hydrochemistry Results         ard       Printable Site Report Layout – Large Format         mation under General Survey Results layout         ment, Townlands, Survey date etc.         Site Notes under Site Report Section layout         Hyrdochemistry Results layout
Site Survey Findings Home This page Printable Site Report Layout – Standa Enter Additional Site Survey Inform e.g Geology, Quaternary deposits, River Catch Enter Survey Site Description and Enter Hydrochemistry data under Enter Site damage and future threa Enter Rare species information un	Survey Results Entry         Yey Results       Site Report Section         Hydrochemistry Results         ard       Printable Site Report Layout – Large Format         mation under General Survey Results layout         ment, Townlands, Survey date etc.         Site Notes under Site Report Section layout         Hyrdochemistry Results layout         ats observed under Site Threats layout at top
Survey Findings Home This page General Survey Printable Site Report Layout – Standa Enter Additional Site Survey Inform e.g Geology, Quaternary deposits, River Catch Enter Survey Site Description and Enter Hydrochemistry data under Enter Site damage and future threa Enter Rare species information un Enter Publications and report info	Survey Results Entry         rey Results       Site Report Section         Hydrochemistry Results         ard       Printable Site Report Layout – Large Format         mation under General Survey Results layout ment, Townlands, Survey date etc.         Site Notes under Site Report Section layout         Hyrdochemistry Results layout         ats observed under Site Threats layout at top         ader Rare Species Information layout
Survey Findings Home This page General Surv Printable Site Report Layout – Standa Enter Additional Site Survey Inforr e.g Geology, Quaternary deposits, River Catch Enter Survey Site Description and Enter Hydrochemistry data under Enter Site damage and future threa Enter Rare species information un Enter Publications and report info Enter Fen Habitat Type and Extent	Survey Results Entry         rey Results       Site Report Section         Hydrochemistry Results         ard       Printable Site Report Layout – Large Format         mation under General Survey Results layout         ment, Townlands, Survey date etc.         Site Notes under Site Report Section layout         Hyrdochemistry Results layout         ats observed under Site Threats layout at top         ader Rare Species Information layout         rmation under Summary Published Info layout

Survey of the Extent and Conservation Status of Fens in Ireland		
Record No. 608	Modification Timestamp 7/28/2007	
	Habitats       Fen Habitat Area       Rare Species       Summary Published       Site Threats         ecorded       Information       Information       Info/Surveys on site       Site Threats	
Add reference to bibliography	ata sources various       Additional Layouts list       Basic Find Command       Various Finds Options       Conservation Recommendation	
	NPWS Fen Survey Results	
SAC/NH	Site Name LISARILLY BOG	
SAC/NH	A Site Code 001781	
Total SAC/NHA Site Area (ha) 9.9		
Non SAC/NHA Site Name(s) or Subunit name within		
	C/NHA Complex	
Total Non SAC/		
Old National Grid Reference H 581 269 Vice County H32		
National Grid Ref E     258146     National Grid Ref N     326900       0"     28 A     At the term of the second		
6" map no. 12 Discovery map no. 28A Air photograph no. 1215A; 1215B		
	General Survey Results Section	
Survey Findings Hor	General Survey Results Site Report Section Hydrochemistry Results	
L	ort Layout – Standard Printable Site Report Layout – Large Format	
Main habitats	POOR FEN	
	NULA for site in drumlin bollow with a risk Cabegroup correct over much of the site	
Brief site description	NHA fen site in drumlin hollow with a rich Sphagnum carpet over much of the site. Most of the central part of the site is a quaking scraw without any significant areas	
	of open water. Interesting poor fen community has developed over much of the scraw area. A fen site possibly in transition to a raised bog.	
Date of Survey	28 May 2007	
Surveyor Names	Peter Foss & Patrick Crushell	
River Catchment	River Magheramey – River Finn	
Townland Names	Lisarilly, Drumguilly, Edenagoash	
Townland Names	Lisarilly, Drumguilly, Edenagoash	

Survey of th	e Extent and Conservation Status of Fens in Ireland
Record No. 608	Modification Timestamp 7/28/2007
Hyrdology	Surface run-off from surrounding drumlins. No observable outflow.
Releve numbers	1781-R1
Photographic numbers	DSC 368–382
Substrate type	□Mineral □Mineral peat mixture
Peat depth (cm)	> 200
Water sample number	1781-W1; 1781-W2
Water table depth (cm)	-10
C Rating: High Io D Rating: Moder E Rating: Low Io Fen Survey evaluation This designated Natur	nty conservation value boal conservation value ate local conservation value cal conservation value ral Heritage Area is dominated by poor fen vegetation.
Fen Survey Landuse w Arable farming Forestry Meadow – silage Meadow – hay Meadow – use un Grazing – sheep Grazing – cattle Grazing – horses	<ul> <li>☐ Horse riding</li> <li>☐ Walking</li> <li>☐ Other:</li> <li>☐ Motor sports/Quads</li> </ul>
Grazing – unknow	n Quarrying/Mining

Agricultural buildings	industrial
	Residential (urban)

	Conservation Manageme		
Grazing – sheep Grazing – sheep Grazing – sheep	entvand Conservation	Status of Fens in	Ireland
Rectaring Ognorses	Legal dumping	Modification Timestamp	7/28/2007
Grazing – unknown	Quarrying/Mining		
☐ Agricultural buildings	□ Industrial □ Residential (urban)		
□ Airport/Airstrip □ Boating	□ Residential (scattered) □ Roads		
	Peat cutting (hand)		
☐ Golfing ☐ Sports pitch	Peat cutting (mechanical)		
Caravans/Camping	None		

Survey of the Exte	nt and	Conser	vation Status	of Fens i	n Ireland
Record No. 608			Modificati	on Timestamp	7/28/2007
Main Layout Habitats Recorded	Inform	nation		Surveys on s	ite meats
Add reference to bibliography				us Finds otions	Conservation Recommendation
	NPW	S Fen Su	rvey Results		
SAC/NHA Site Na	me LIS	SARILLY B	OG		
SAC/NHA Site Co	de	00178	31		
Total SAC/NHA Site Area (ha)					
Non SAC/NHA Site Name	<b>`</b>				
or Subunit name w SAC/NHA Com					
		Total SAC/NHA Sub	ounit Area		
		H 581 269		H32	
			Vice County		
National Grid Ref E		258146	National Grid Ref N	326	900
6" map no. 12 Dis	covery n	nap no.	28A Air pho	tograph no.	1215A; 1215B
G	General Survey Reports Section				
Survey Findings Home Gene	ral Surve	ey Results	Site Report Secti	on Hydro	chemistry Results
Printable Site Report Layout – Standard Printable Site Report Layout – Large Format					
Main habitats POOR FEN					
Brief site description					
NHA fen site in drumlin hollow w	ith a rich	Sphagnum	a carpet over much o	of the site. M	ost of the central
part of the site is a quaking scra					

#### Fen Survey Site Synopsis with Fen interest Description

Lisarilly Bog is a small, fairly remote site situated about 8 km east of Clones. This is an area of poor fen vegetation occurring on a quaking scraw in a hollow surrounded by drumlins.

community has developed over much of the scraw area. A fen site possibly in transition to a raised bog.

The poor fen has developed on a cutover raised bog and may be in transition to a raised bog. It is oligotrophic in nature and sensitive to nutrient enrichment from the surrounding farmland. Species present in the scraw include Bog Bean (*Menyanthes trifoliata*), Bog Moss (*Sphagnum capillifolium, Sphagnum subnitens*), Devil's-bit Scabious (*Succisa pratensis*), *Aulacomnium palustre* and a number of sedges including *Carex diandra, Carex rostrata* and *Carex limosa*.

Willow (*Salix aurita*) scrub is scattered about the site, forming small, open patches many of which are moribund in character. Small patches of marginal reed swamp (*Typha latifolia*) and *Carex paniculata* tussocks add to the diversity of the site. It should be noted that in 2007 many of the Willow in the center of the reserve were moribund or dead.

#### Survey of the Extent and Conservation Status of Fens in Ireland

#### Record No. 608

Modification Timestamp 7/28/2007

There is a narrow grassy zone around the edge of the scraw. Here Bottle sedge (*Carex rostrata*) and Yorkshire Fog (*Holcus lanatus*) are abundant.

Some areas of the bog have been cut for peat in distant the past. These cutaway areas contain occasional low hummocks of Ling (*Calluna vulgaris*) and small pools containing Stonewort (*Chara* spp.).

Much of the bogs small catchment area is included within the NHA boundary. This consists of improved grassland requiring ongoing environmentally sensitive farming to ensure nutrient input is controlled.

The poor fen is mostly undisturbed. It retains considerable interest because it is the only reasonably intact example of poor fen to raised bog transition in the Finn-Lackey catchment area.

#### Fen Survey Site Notes

N1 Habitat – Improved grassland used for silage production and grazing, sloping down towards the fen hollow. Becoming wetter with narrow rush fringe by the edge of the fen. Area included within NHA.

N1A Boundary – Wet grassland, with deep poaching, separated from fen by barbed wire fence, with a shallow overgrown drainage ditch adjacent. No grazing on the fen side of fence.

N2 Habitat – Wet scrub woodland with *Salix cinerea* and *Salix aurita*. Species present in the under storey included: *Carex paniculata, Angelica sylvestris, Hylocomium splendens, Dicranum scoparium, Anthoxanthum odoratum and Agrostis stolonifera, Luzula multiflora, Holcus lanatus, Rumex acetosa, Calliergon cuspidatum, Rhytidiadelphus squarrosus, Viola palustris and Utricularia minor* in small open water pools at edge of scrub.

N3 Habitat – Hedgerow area on drumlins with *Crataegus monogyna, Fraxinus excelsior, Rubus fruticosus agg., Prunus spinosa*.

N4 Habitat – Quaking poor fen vegetation occupying most of the central portion of the site. Sparsely wooded with *Salix aurita* bushes to 2 m tall, many of which were dying particularly in the center of the fen. Numerous small willow saplings less than 50 cm tall throughout area. A small number of scattered *Calluna vulgaris* dominated low *Sphagnum* hummocks also occurred within the fen area.

Water present at the surface of fen during the survey. Some small pools of open water area present. Water sample W1 taken in this area.

Species present in the fen zone included: *Carex diandra, Carex limosa, Carex rostrata, Carex viridula ssp. oedocarpa, Menyanthes trifoliata, Aulacomnium palustre, Drosera rotundifolia, Eriophorum angustifolium, Calliergonella cuspidata, Succisa pratensis* and *Sphagnum capillifolium* which formed the dominant cover in the moss layer.

See relevé number 1781-R1 from Monaghan Fen Survey 2007 for species present with relative cover values, and species list 1781-SP1 for a full list of species recorded within the fen community at the site.

N5 Habitat – Towards the edge of the poor fen area, within a 10 to 15 m zone of the surrounding wet grassland, there is an increase in the occurrence of *Carex rostrata, Carex nigra, Holcus lanatus, Lychnis flos-cuculi, Galium palustre, Carex paniculata, Carex curta, Hydrocotyle vulgaris,* 

Survey of t	he Extent and Conservation Status of Fens in Ireland
Record No. 608	Modification Timestamp 7/28/2007
	Iabitats       Fen Habitat Area       Rare Species       Summary Published       Site Threats         Information       Information       Info/Surveys on site       Site Threats
Add reference to bibliography	Data sources Additional Basic Find Various Finds Conservation Various Layouts list Command Options Recommendation
	NPWS Fen Survey Results
SAC/NHA	Site Name LISARILLY BOG
	004704
	A Site Code 001781 Site Area (ha) 9.9
Non SAC/NHA S	ite Name(s)
	unit_name within C/NHA Complex
Total Non SAC/N	
Old National Grid	
6" map no.	al Grid Ref E 258146 National Grid Ref N 326900 12 Discovery map no. 28A Air photograph no. 1215A; 1215B
	NPWS Fen Survey Hydrochemistry Data
Survey Findings Hom	General Survey Results Site Report Section Hydrochemistry Results
Printable Site Repo	ort Layout – Standard Printable Site Report Layout – Large Format
Releve numbers	1781-R1
Substrate type	☐Mineral  ☐Mineral peat mixture
	> 200
Water sample 1 number	781-W1; 1781-W2
	10
(cm)	
Field Survey pH reading: W1 - 6.4;	W2 – 6.65
	aboratory Hydrochemistry Analysis:
Alkalinity mg/l CacO3:	N1 – 98; W2 – 184
Ammonia r	

Survey of	the Extent and (	Conservation	Status of Fens in	Ireland
Record No. 608			Modification Timestamp	7/28/2007
0.1				
Calcium mg/l:	W1 – 37.17; W2 – 69.59			
Conductivity uS/cm:	W1 – 239; W2 – 406			
Copper mg/l:	W1 – <1; W2 – <1			
lron mg/l:	W1 – 169.8; W2 – 107.3			
Magnesium mg/l:	W1 – 3.04; W2 – 4.70			
Manganese mg/l:	W1 – 242.7; W2 – 23.2			
Ortho-Phosphate mg/l P:	nm			
pH:	W1 – 6.6; W2 – 6.8			
Potassium mg/l:	W1 – <1; W2 – <1			
Sulphate mg/l SO4:	W1 – 4.0; W2 – 1.9			
Sodium mg/l:	W1 – 6.13; W2 – 6.69			
Oxidised Nitrogen mg/l N:	nm			
Total Phosphorus mg/l:	W1 – 0.080; W2 – <0.010			
Zinc mg/l:	W1 – <1; W2 – 4.7			
	nm – no measurements du	ue to		

laboratory error;

#### Appendix 13: Habitat Classification Scheme for Irish Fens used on the Monaghan Fen Survey 2007

Irish Fens have been classified using a number of different schemes based on a variety of ecological factors including the peat type on which they occur, features and composition of their surface vegetation, hydrological conditions and their topographic location.

A number of the most popular fen classification schemes used are reproduced here (after Foss 2007), to demonstrate how the classification systems differ and relate to one another, and introduce the reader to the features and terms used in relation to the classification and description of Irish fens.

#### 1. Fen topography and hydrological classification scheme

Irish Fens may be divided into two major groups based upon the topographic and hydrological conditions prevailing. These are topogenous fens and soligenous fens.

#### 1.1 Topogenous Fens

These are formed where the topography results in a basin-type water collection system with little water movement out of the system and water fluctuations are in a vertical direction, as in shallow depressions, or in transitional zones of vegetation bordering open waters.

There are three main types of topogenous fen recognised in Ireland (Crushell 2000; Sheehy-Skeffington & O'Connell 1998; Ratcliffe 1977):

1 Open-water transition fens form on lake edges, where they occur on the landward side of the emergent reed vegetation which occurs further out into deeper water areas. They are one of the most common fen type fund in Ireland. They occur predominantly in the limestone regions of Ireland and can be extensive. An example of such fens would be those around Lough Corrib, Co. Galway.

2 Flood plain fens occur on a waterlogged flood-plains adjacent to rivers or streams. They occur in depressions or low lying areas within the floodplain where still-standing water allows development of fen vegetation. This fen type is very rare in Ireland as many sites have disappeared as a result of arterial drainage. An example of such fens would be those alongside the River Shannon and its tributaries.

3 Basin fens form in waterlogged basins where there is little through flow of water, and open water may be present. These fens often support a floating raft of vegetation known as a Schwingmoor. These fens rare in Ireland as most sites which originally conformed to this fen type have developed into raised bogs as peat continued to accumulate. They mainly occur in the Irish midlands. An example of such a fen would be at Scragh Bog, Co. Westmeath.

#### 1.2 Soligenous Fens

These are formed on sloping terrain where an adequate supply of water provides a continuous through flow of water. Smaller areas of soligenous fen may also occur within bogs or mires associated with routes of moving drainage water.

There are three main types of soligenous fens recognised in Ireland (Crushell 2000; Sheehy-Skeffington & O'Connell 1998; Ratcliffe 1977):

1 Valley Fens develop on the floor of shallow valleys. The slope within these fens may be very gentle and water movement may not be immediately apparent. The main source of water would be from springs and seepage from the surrounding valley which is usually calcium rich. Valley fens are rare and occur mainly in the eastern part of the country. The combination of calcium rich water input and low annual rainfall amounts may help explain why these fens have not developed into raised bogs in the eastern part of the country (Sheehy-Skeffington & O'Connell 1998). An example of such a fen would be Pollardstown Fen, County Kildare.

2 Flush Fens occur as small areas within other fen and peatland types, such as raised or more typically blanket bogs. Within these areas the localised flow of water supplies more minerals than are found in the surrounding peatland areas which results in the development of floristically and visually identifiable areas of fen vegetation. In certain cases unusual communities of plants are found in these flush fens, more typical of arctic conditions (Lockhart 1999). This fen type is widespread within blanket bog areas of the West of Ireland. An example of such a fen would be at Uggool, Co. Mayo.

3 Calcareous Spring Fens develop around permanent freshwater springs or areas of seepage that are especially rich in calcium. The up welling of water is often associated with an interface between permeable and impermeable rock or soil strata. The water feeding these fens wells up from the ground and often deposits a white calcareous crust known as tufa on the above ground vegetation. Spring fen sites are often very limited in extent and often occur within larger fen systems or completely unrelated habitats e.g. woodlands, or exposed rocky terrain. These fens are rare in Ireland. Examples of such spring fens would be those found on Pollardstown Fen, County Kildare; Errisbeg, County Galway; and Ballyman Glen, County Wicklow.

#### 1.3 Rich and Poor Fens

Where fens are characterised by alkaline conditions resulting from water draining from limestone and other calcareous soil formations, they are distinguished as "rich fen", though there is often a general understanding that a "fen" will be relatively eutrophic (nutrient rich). A classic plant of rich fen is Saw-sedge (*Cladium mariscus*).

As we have seen from the definition of "fen" above, fens can also occur in sites with much lower mineral inputs (e.g. blanket bog) and a correspondingly higher acidity. Such areas may be described as "poor fen" and are commonly characterised by extensive development of *Sphagnum* moss carpets.

This variation and often imprecision of terminology has been examined by Wheeler & Proctor (2000), who make a number of recommendations. In examining a wide range of mire types they find a bimodal distribution of pH that backs up the rather vague existing concepts of "fen" and "bog". They consider fen to be defined by a pH generally above 6.0 and with relatively high levels of calcium and bicarbonate ions. The vegetation of such mires tends to be rich in herbs and 'brown mosses' (they cite *Drepanocladus, Campylium* and *Scorpidium*, and *Cratoneuron* also should be included).

By contrast, bog is defined by a pH generally below 5.0, with low levels of calcium ions, and with chloride and sulphate ions as the main anions. Vegetation includes members of the heather family (*Calluna, Erica* etc.), cotton-grasses (*Eriophorum*) and other calcifuge ("calcium-avoiding") members of the sedge family, and often an abundance of *Sphagnum* mosses.

Using this definition, many examples of so-called "poor fen" or "acid fen" are better considered as "bog" and this gives a more satisfactory treatment of phases and micro topography in complex acid mire systems.

Although this is an interesting concept, it is not one adopted in the present study where poor fen is recognised as a fen vegetation type rather than a bog vegetation type.

#### 2. EU Habitats Directive Annex 1 classification scheme

The EU Habitats Directive(92/43/EEC) was transposed into Irish law in the European Union (Natural Habitats) Regulations, 1997. These Regulations have since been amended twice with under Statutory Instrument SI 233/1998 and SI 378/2005. The Directive lists (in Annex I) certain habitats that must be protected within Special Areas of Conservation (SACs). Under the various habitats listed in Annex 1 of the Directive, four fen types are listed which occur in Ireland.

The Habitats Directive interpretation manual of European Union habitats, Version EUR 15 (Rameo 1996) lists the following fen types found in Ireland for which Ireland was to select a representative sample of conservation worthy sites. Habitat type 7210 *Calcareous fens with Cladium mariscus and species of the Caricion davallianae and 7220 * Petrifying springs with tufa formation (Cratoneurion) are both listed as priority habitats requiring the highest level of conservation within member states.

The following is an abstracts from EU Habitats Directive Interpretation Manual for the 4 fen types listed in the Directive and occurring in Ireland:

#### 7140 Transition mires and quaking bogs

#### PAL.CLASS.: 54.5

1) Peat-forming communities developed at the surface of oligotrophic to mesotrophic waters, with characteristics intermediate between soligenous and ombrogenous types. They present a large and diverse range of plant communities. In large peaty systems, the most prominent communities are swaying swards, floating carpets or quaking mires formed by medium-sized or small sedges, associated with sphagnum or brown mosses. They are generally accompanied by aquatic and amphibious communities. In the Boreal region this habitat type includes minerotrophic fens that are not part of a larger mire complex, open swamps and small fens in the transition zone between water (lakes, ponds) and mineral soil.

These mires and bogs belong to the Scheuchzerietalia palustris order (oligotrophic floating carpets among others) and to the Caricetalia fuscae order (quaking communities). Oligotrophic water-land interfaces with Carex rostrata are included.

2) Plants: Eriophorum gracile, Carex chordorrhiza, Carex lasiocarpa, Carex diandra, Carex rostrata, Carex limosa, Scheuchzeria palustris, Hammarbya paludosa, Liparis loeselii, Rhynchospora alba, R. fusca, Menyanthes trifoliata, Epilobium palustre, Pedicularis palustris, Sphagnum sp. (S. papillosum, S. angustifolium, S. subsecundum, S. fimbriatum, S. riparium, S. cuspidatum, Calliergon giganteum, Drepanocladus revolvens, Scorpidium scorpioides, Campylium stellatum, Aneura pinguis.

#### 3) Corresponding categories

United Kingdom classification: "M4 - Carex rostrata-Sphagnum recurvum mire", "M5 - Carex rostrata- Sphagnum squarrosum mire", "M8 - Carex rostrata-Sphagnum warnstofii mire", "M9 Carex rostrata-Calliergon cuspidatum/giganteum", "S27 -Carex rostrata - Potentilla palustris fen".

#### 7210 *Calcareous fens with Cladium mariscus and species of the Caricion davallianae

#### PAL.CLASS.: 53.3

1) *Cladium mariscus* beds of the emergent-plant zones of lakes, fallow lands or succession stage of extensively farmed wet meadows in contact with the vegetation of the Caricion davallianae or other Phragmition species [Cladietum marisci (Allorge 1922) Zobrist 1935].

2) Plants: Cladium mariscus, Kostelezkia pentacarpos.

#### 3) Corresponding categories

United Kingdom classification: "S2 Cladietum marisci", "S24 Peucedano - Phragmitetum australis", "S25 Phragmites australis - Eupatorium cannabinum fen", "M9 Carex rostrata- Calliergon spp. mire", "M13 Schoenus nigricans - Juncus subnodulosus mire", "M14 Schoenus nigricans -

Narthecium ossifragum mire", "M24 Molinia caerulea - Cirsium dissectum fen meadow", "SD 14 Salix repens - Campylium stellatum dune slack" and "SD 15 Salix repens - Calliergon cuspidatum dune slack".

4) In contact with calcareous fens (7230), but also with acid fens, extensive wet meadows, other reed beds and tall sedge communities.

#### 7220 * Petrifying springs with tufa formation (Cratoneurion)

PAL.CLASS.: 54.12

1) Hard water springs with active formation of travertine or tufa. These formations are found in such diverse environments as forests or open countryside. They are generally small (point or linear formations) and dominated by bryophytes (Cratoneurion commutati).

2) Plants: Arabis soyeri, Cochlearia pyrenaica (in sites with heavy metals), Pinguicula vulgaris, Saxifraga aizoides. Mosses: Catoscopium nigritum, Cratoneuron commutatum, C. commutatum var. falcatum, C. filicinum, Eucladium verticillatum, Gymnostomum recurvirostrum. In the Boreal region also Carex approprinquata, Epilobium davuricum, Juncus triglumis, Drepanocladus vernicosus, Philonotis calcarea, Scorpidium revolvens, S.cossoni, Cratoneuron decipiens, Bryum pseudotriquetrum.

#### 3) Corresponding categories

United Kingdom classification: "M37 Cratoneuron commutatum - Festuca rubra spring community" and "M38 Cratoneuron commutatum-Carex nigra spring community".

4) Can form complexes with transition mires, fens, chasmophytic communities of cold and humid environments and heaths and calcareous grassland (Festuco-Brometalia). In order to preserve this habitat of very limited expanse in the field, it is essential to preserve its surroundings and the whole hydrological system concerned.

#### 7230 Alkaline fens

PAL.CLASS.: 54.2

1) Wetlands mostly or largely occupied by peat- or tufa-producing small sedge and brown moss communities developed on soils permanently waterlogged, with a soligenous or topogenous base rich, often calcareous water supply, and with the water table at, or slightly above or below, the substratum. Peat formation, when it occurs, is infra-aquatic. Calciphile small sedges and other Cyperaceae usually dominate the mire communities, which belong to the *Caricion davallianae*, characterised by a usually prominent "brown moss" carpet formed by *Campylium stellatum*, *Drepanocladus intermedius*, *D. revolvens*, *Cratoneuron commutatum*, *Acrocladium cuspidatum*, *Ctenidium molluscum*, *Fissidens adianthoides*, *Bryum pseudotriquetrum* and others, a grasslike growth of *Schoenus nigricans*, *S. ferrugineus*, *Eriophorum latifolium*, *Carex davalliana*, *C. flava*, *C. lepidocarpa*, *C. hostiana*, *C. panicea*, *Juncus subnodulosus*, *Scirpus cespitosus*, *Eleocharis quinqueflora*, and a very rich herbaceous flora including *Tofieldia calyculata*, *Dactylorhiza incarnata*, *D. traunsteineri*, *D. traunsteinerioides*, *D. russowii*, *D. majalis* ssp. brevifolia, *D. cruenta*, *Liparis loeselii*, *Herminium monorchis*, *Epipactis palustris*, *Pinguicula vulgaris*, *Pedicularis sceptrum - carolinum*, *Primula farinosa*, *Swertia perennis*.

Wet grasslands (Molinietalia caerulaea, e.g. Juncetum subnodulosi & Cirsietum rivularis, 37), tall sedge beds (Magnocaricion, 53.2), reed formations (Phragmition, 53.1), fen sedge beds (Cladietum mariscae, 53.3), may form part of the fen system, with communities related to transition mires (54.5, 54.6) and amphibious or aquatic vegetation (22.3, 22.4) or spring communities (54.1) developing in depressions. The sub-units below, which can, alone or in combination, and together with codes selected from the categories just mentioned, describe the composition of the fen, are understood to include the mire communities sensu stricto (Caricion davallianae), their transition to the Molinion, and assemblages that, although they may be phytosociologically referable to alkaline Molinion associations, contain a large representation of the Caricion davallianae species listed, in addition to being integrated in the fen system; this somewhat parallels the definition of an integrated class Molinio - Caricetalia davallianae in Rameau

et al., 1989. Outside of rich fen systems, fen communities can occur as small areas in dune slack systems (16.3), in transition mires (54.5), in wet grasslands (37), on tufa cones (54.121) and in a few other situations. The codes below can be used, in conjunction with the relevant principal code, to signal their presence. Rich fens are exceptionally endowed with spectacular, specialised, strictly restricted species. They are among the habitats that have undergone the most serious decline. They are essentially extinct in several regions and gravely endangered in most.

2) Plants: Schoenus nigricans, S. ferrugineus, Carex spp., Eriophorum latifolium, Cinclidium stygium, Tomentypnum nitens.

## 3. Heritage Council classification scheme for fens and related wetlands

The Heritage Council Guide to habitats in Ireland (Fossitt 2000) sets out a standard hierarchical scheme for the identification of habitats in Ireland. The guide lists the main fen habitats in Ireland under the category of peatlands and freshwater. The guide is a practical tool to allow identification and recording of habitat types.

The 5 specific descriptions which most closely relate to those being recorded in the present NPWS Fen Study are reproduced for information here, namely:

Level 1 Category: Level 2 Categories: Level 3 Categories:	Peatlands (P) Fens & Flushes (PF)
5	Rich fen and flush PF1
	Poor fen and flush PF2
	Transition mire and quaking bog PF3
Level 1 Category:	Freshwater (F)
Level 2 Categories:	Springs (FP)
Level 3 Categories:	
	Calcareous springs FP1

Non-calcareous springs FP2

One category of Fossitt namely Rich fen and flush PF1, corresponds to two of the categories being investigated in this study namely Alkaline fens (7230) and Calcareous fens with *Cladium mariscus* and species of the Caricion davallianae (7210).

In addition to the descriptions of habitats that most closely relate to those of interest to this NPWS Fen Study, descriptions are also provided in this section for a number of related wetland habitats which may often be confused with "fen" vegetation as defined in this study. These habitats are Freshwater Marsh GM1; Wet grassland GS4; Reed and large sedge swamps FS1; Tall-herb swamps FS2.

The descriptions below are taken from Fossitt (2000) with some minor corrections and changes to the text.

#### Peatlands (P)

Fossitt (2000) describes fens as "peat-forming systems that differ from bogs in that they are fed by groundwater or moving surface waters. They occur in river valleys, poorly drained basins or hollows, and beside open stretches of water (lake margins or river flood plains). Fens may also be associated with the fringes or other parts of acid bogs where there is enrichment of the water supply."

Any areas of fen that have been modified by turf cutting should be considered under cutover bog - PB4. Flushes are usually smaller features that are maintained by the movement or seepage of water. They occur on slopes and may or may not be peat-forming. Some flushes feed into fens while others may be associated with a range of different habitat types including bogs, woodlands and grasslands. Flushes in bogs are usually characterised by changes in the vegetation that are brought about by an enhanced supply of nutrients. Note that springs are considered in the freshwater section (FP1-2) (see below).

Fens and flushes (PF) are divided into 'rich' (basic) and 'poor' (acid) types depending on the origin and nature of the water supply. A third category, transition mire and quaking bog - PF3, is also distinguished because it has vegetation characteristics that are intermediate between rich and poor fen categories.

#### Rich fen and flush PF1

Rich fens and flushes are fed by groundwater or flowing surface waters that are at least mildly base-rich or calcareous, and are usually found over areas of limestone bedrock. The substratum is

waterlogged peat (except in the case of some flushes) and this usually has a high mineral content. Vegetation is typically dominated by Black Bog-rush (*Schoenus nigricans*) and/or small to medium sedges such as *Carex viridula*, *C. nigra*, *C. dioica* and *C. panicea*. Other prominent components of the vegetation include rushes, particularly Blunt-flowered Rush (*Juncus subnodulosus*), Purple Moor-grass (*Molinia caerulea*), Marsh Pennywort (*Hydrocotyle vulgaris*), Lesser Spearwort (*Ranunculus flammula*), Water Mint (*Mentha aquatica*), Common Marshbedstraw (*Galium palustre*), Grass-of-Parnassus (*Parnassia palustris*), Common Butterwort (*Pinguicula vulgaris*) and Devil's-bit Scabious (*Succisa pratensis*). Rich fen and flush can be important for orchids such as *Epipactis palustris* and *Dactylorhiza* spp. A well-developed moss layer with *Campylium stellatum*, *Scorpidium scorpioides* and *Drepanocladus revolvens* is also characteristic. The tops of Black Bog-rush (*Schoenus nigricans*) tussocks are relatively dry and may support plants such as heathers (*Calluna vulgaris*, *Erica tetralix*), Tormentil (*Potentilla erecta*), Bog-myrtle (*Myrica gale*) and Bog Asphodel (*Narthecium ossifragum*).

Rich fens and flushes may have some patchy cover of Common Reed (*Phragmites australis*), Bulrush (*Typha latifolia*), or tussock-forming species such as Great Fen-sedge (*Cladium mariscus*) and Greater Tussock-sedge (*Carex paniculata*). If large areas are dominated by species-poor or mono dominant stands of tall herbaceous plants, they should be considered under reed and large sedge swamps - FS1. Fens may contain patches of scrub or woodland, or bodies of open water with aquatics such as Bogbean (*Menyanthes trifoliata*). If the surface is quaking and very wet, and the vegetation comprises some species that may also be found in acid bogs, consider the category transition mire and quaking bog - PF3.

*Links with EU Habitats Directive Annex I:* This category corresponds to two annexed habitats, 'alkaline fens (7230)' and '*Calcareous fens with *Cladium mariscus* and species of the Caricion davallianae (7210)'. The latter is a priority habitat that describes stands of species-rich alkaline fen vegetation in which Great Fen-sedge (*Cladium mariscus*) is dominant.

#### Poor fen and flush PF2

This category includes peat-forming fens and flushes that are fed by groundwater or flowing surface waters that are acid. Flushes that are acidic but not peat-forming should also be considered here. In most cases the substratum is acid peat which has a higher nutrient status than that of ombrotrophic bogs. The vegetation of poor fens and flushes is typically dominated by sedges (particularly *Carex rostrata, C. nigra, C. curta, C. lasiocarpa and C. echinata*) and/or rushes (*Juncus effusus, J. articulatus, J. acutiflorus*). Other common components include Common Cottongrass (*Eriophorum angustifolium*), Velvet Bent (*Agrostis canina*), Purple Moor-grass (*Molinia caerulea*), Yorkshire-fog (*Holcus lanatus*) and broad-leaved herbs such as Marsh Violet (*Viola palustris*), Bogbean (*Menyanthes trifoliata*), Heath Bedstraw (*Galium saxatile*), Tormentil (*Potentilla erecta*) and Marsh Cinquefoil (*Potentilla palustris*). There may be some limited cover of dwarf shrubs. Extensive carpets of mosses including, in particular, *Sphagnum palustre, S. recurvum, S. auriculatum, Calliergon stramineum* and *Polytrichum commune*, are characteristic.

Although poor fen and flush is not listed in Annex I of the Habitats Directive, it is very limited in extent in Ireland and should be regarded as being of special conservation importance (C. Ó Críodáin, pers. comm.).

#### Transition mire and quaking bog PF3

Transition mires and quaking bogs are extremely wet peat-forming systems with characteristics that are intermediate between poor and rich fens. For this reason, they are considered as a separate habitat but they may occur within, or on the fringes of other peat-forming systems. Transition mires and quaking bogs are usually associated with the wettest parts of a bog or fen and can be found in wet hollows, infilling depressions, or at the transition to areas of open water. Vegetation frequently forms a floating mat or surface scraw over saturated, spongy or quaking peat. Standing water may occur in pools or along seepage zones. The vegetation typically comprises species that are characteristic of bog, fen and open water habitats. Small to medium sedges, mainly Carex spp. (particularly *Carex diandra, C. lasiocarpa, C. limosa and C. viridula*), usually dominate and may occur together with White Beak-sedge (*Rhynchospora alba*), cotton grasses (*Eriophorum angustifolium*, and the much rarer *E. gracile*), Creeping Bent (*Agrostis stolonifera*), Purple Moor-grass (*Molinia caerulea*), and a range of broad-leaved wetland herbs such as Bogbean (*Menyanthes trifoliata*), Marsh Pennywort (*Hydrocotyle vulgaris*), Lesser

Spearwort (*Ranunculus flammula*), Marsh Cinquefoil (*Potentilla palustris*) and Marsh Lousewort (*Pedicularis palustris*). Extensive moss cover is characteristic; *Sphagnum* spp., *Calliergon* spp. and *Scorpidium scorpioides* are usually abundant.

*Links with EU Habitats Directive Annex I:* Corresponds to the annexed habitat, 'Transition mires and quaking bogs (7140)'

#### Springs (FP)

Springs are usually very small local features that are maintained by a more or less continual supply of water from up welling groundwater sources, or along seepage zones. They occur in upland and lowland areas and may be associated with a variety of different habitat groups such as woodland, heath, grassland or exposed rock. Springs are characterised by abundant mosses and may or may not be peat-forming.

#### Calcareous springs FP1

This category is used for springs that are irrigated and kept permanently moist by water that is calcareous and oligotrophic. These springs may be associated with shallow peaty or skeletal mineral soils. There may be some precipitation of marl, or tufa formation. Calcareous springs are typically dominated by mosses, and by *Cratoneuron* spp. in particular; *Bryum pseudotriquetrum* is also characteristic. Other common components of the vegetation include grasses (*Festuca rubra, Briza media*), sedges (*Carex dioica, C. pulicaris, C. flacca, C. nigra*), Common Butterwort (*Pinguicula vulgaris*) and Marsh Horsetail (*Equisetum palustre*). The relatively rare Yellow Saxifrage (*Saxifraga aizoides*) can occur in calcareous springs and is diagnostic of this habitat.

*Links with EU Habitats Directive Annex I:* Calcareous springs with tufa formation are recognised as the priority habitat, '*Petrifying springs with tufa formation (*Cratoneurion*) (7220)'.

#### Non-calcareous springs FP2

This category is used for springs that are irrigated and kept permanently moist by acidic to neutral water that is base-poor and typically oligotrophic. They may be associated with skeletal mineral or peaty soils. Vegetation is typically dominated by mosses (*particularly Sphagnum auriculatum, Calliergon sarmentosum and Polytrichum commune*), grasses (*Agrostis spp., Deschampsia caespitosa, Nardus stricta*), Bulbous Rush (*Juncus bulbosus*), and wetland species such as Marsh Violet (*Viola palustris*), Lesser Spearwort (*Ranunculus flammula*) and Marsh Pennywort (*Hydrocotyle vulgaris*).

#### Other wetland habitats that may be found in association with fens

#### <u>Marsh</u>

#### Freshwater Marsh GM1

Marsh is found on level ground near river banks, lake shores, and in other places where mineral or shallow peaty soils are waterlogged, and where the water table is close to ground level for most of the year. Unlike swamps, standing water is not a characteristic feature except, perhaps, during very wet periods or in winter months. Marsh is comparatively species-rich and supports a high proportion of wetland species in addition to the typical dominants: rushes (Juncus spp.), sedges (Carex spp.) and Meadow sweet (Filipendula ulmaria). Grasses such as Creeping Bent (Agrostis stolonifera), Tall Fescue (Festuca arundinacea) and Purple Moor-grass (Molinia caerulea) may be present but not abundant. To be considered as marsh, the proportion of sedges and grasses should not exceed 50%. The broad-leaved herb component may include Water Mint (Mentha aquatica), Marsh Thistle (Cirsium palustre), Wild Angelica (Angelica sylvestris), Marsh Pennywort (Hydrocotyle vulgaris), Marsh-marigold (Caltha palustris), Common Valerian (Valeriana officinalis), Ragged-robin (Lychnis flos-cuculi), Purple-loosestrife (Lythrum salicaria), Marsh Woundwort (Stachys palustris) and Marsh Cinquefoil (Potentilla palustris). Marsh may also support horsetails (Equisetum spp.), Yellow Iris (Iris pseudacorus), reeds and other large grasses and sedges but these should not dominate. Herbs that are characteristic of drier ground are rare or absent in marshes. Mosses, particularly Calliergon and Climacium spp., may be plentiful.

Marsh differs from swamps in that the vegetation is usually more species-rich, standing water is absent for much of the year, and reeds and other tall or bulky grasses and sedges, and tall herbs are not overwhelmingly dominant in the former. The distinction between marsh and wet grassland - GS4 is less clear but, in marsh, wetland herbs should be prominent, and species of drier ground should generally be absent. If there is greater than 50% cover of grasses and sedges, the habitat should be considered under grassland or, if it is a peat-forming system, under fens and flushes. Marsh is not a peat-forming habitat.

*Links with EU Habitats Directive Annex I:* Marsh may contain pockets of the annexed habitat, 'Hydrophilous tall herb fringe communities of plains and of the montane to alpine levels (6430)'.

#### <u>Grassland</u>

#### Wet grassland GS4

This type of grassland can be found on flat or sloping ground in upland and lowland areas. It occurs on wet or waterlogged mineral or organic soils that are poorly-drained or, in some cases, subjected to seasonal or periodic flooding. On sloping ground, wet grassland is mainly confined to clay-rich gleys and loams, or organic soils that are wet but not waterlogged. This category includes areas of poorly-drained farmland that have not recently been improved, seasonally-flooded alluvial grasslands such as the River Shannon callows, and wet grasslands of turlough basins (See also turloughs - FL6).

Species composition varies considerably. Wet grassland often contains abundant rushes (*Juncus effusus, J. acutiflorus, J. articulatus, J. inflexus*) and/or small sedges (*Carex flacca, C. hirta, C. ovalis*), in addition to grasses such as Yorkshire-fog (*Holcus Ianatus*), Creeping Bent (*Agrostis stolonifera*), Marsh Foxtail (*Alopecurus geniculatus*), Rough Meadow-grass (*Poa trivialis*) and Tufted Hair-grass (*Deschampsia caespitosa*). Purple Moor-grass (*Molinia caerulea*) may also be present but should not dominate. The proportion of broad-leaved herbs is often high; those that commonly occur in wet grassland include Creeping Buttercup (*Ranunculus repens*), Marsh Thistle (*Cirsium palustre*), Silverweed (*Potentilla anserina*), Meadow sweet (*Filipendula ulmaria*), Water Mint (*Mentha aquatica*), Common Marsh-bedstraw (*Galium palustre*), Devil's-bit Scabious (*Succisa pratensis*), Lesser Spearwort (*Ranunculus flammula*) and Cuckoo flower (*Cardamine pratensis*). Other common broad-leaved herbs that occur on drier grasslands may also be present, depending on the degree of wetness. Wet grassland may be important for orchids such as Spotted-orchid (*Dactylorhiza maculata*). Horsetails (*Equisetum* spp.), Yellow Iris (*Iris pseudacorus*), Floating Sweet-grass (*Glyceria fluitans*) and clumps of tall reeds may be locally abundant.

Wet grassland frequently grades into marsh - GM1 and there are many similarities in the range of species present in both habitats. To be included in the wet grassland category, the cover of grasses should exceed 50%, except in areas where rushes or small sedges predominate, and the total cover of reeds, large sedges and broad-leaved herbs should be less than 50%. Among the suite of broad-leaved herbs that are present, there should be a significant proportion of drier grassland species in addition to those that are more commonly associated with wetlands.

*Links with EU Habitats Directive Annex I*: Wet grassland may contain examples of the annexed habitat, 'Molinia meadows on calcareous, peaty or clayey-silt-laden soils (*Molinion caerulea*) (6410)'.

#### <u>Swamps</u>

Swamps are stands of emergent herbaceous vegetation that generally occupy a zone at the transition from open water to terrestrial habitats. Water levels may fluctuate but swamps typically remain wet with the water table above ground level for most of the year. They can be associated with freshwater or brackish systems, and the water may be stagnant, slow-moving or tidal. Swamps occur along the margins of rivers, lakes, canals, lagoons and estuaries, but may also occupy more extensive flooded areas or infilling basins. Some swamps occur as floating mats of vegetation.

#### Reed and large sedge swamps FS1

This category includes species-poor stands of herbaceous vegetation that are dominated by reeds and other large grasses or large, tussock-forming sedges. Most reed and large sedge swamps are

overwhelmingly dominated by one or a small number of species, as in the case of reed beds. Stands of vegetation can range from very dense to open. Typical components include Common Reed (*Phragmites australis*), Common Club-rush (*Schoenoplectus lacustris*), Reed Sweet-grass (*Glyceria maxima*), Branched Bur-reed (*Sparganium erectum*), Reed Canary-grass (*Phalaris arundinacea*), Great Fen-sedge (*Cladium mariscus*), Greater Tussock-sedge (*Carex paniculata*), Bulrush (*Typha latifolia*) and Water Horsetail (*Equisetum fluviatile*). Stands of Sea Club-rush (*Bolboschoenus maritimus*) may also occur in brackish waters. Note that a number of the possible dominants have a late growing season and their full extent may be difficult to determine before mid-May. Unlike tall-herb swamps - FS2 below, the broad-leaved herb component is minor. Vegetation typically lacks stratification as there is little or no development of an under storey element. In some situations there may be a mixture of other species such as Common Marsh-bedstraw (*Galium palustre*), Water Mint (*Mentha aquatica*), forget-me-nots (*Myosotis* spp.), Bogbean (*Menyanthes trifoliata*), Marsh Cinquefoil (*Potentilla palustris*), Wild Angelica (*Angelica sylvestris*), Meadow sweet (*Filipendula ulmaria*) or Fool's Water-cress (*Apium nodiflorum*).

#### Tall-herb swamps FS2

Tall-herb swamps are comparatively species-rich stands of herbaceous vegetation that occur in wet areas where the water table is above the ground surface for most of the year, or where water levels fluctuate regularly as in the case of tidal sections of rivers. Tall or robust broad-leaved herbs dominate and common components include Lesser Water-parsnip (*Berula erecta*), Fool's Water-cress (*Apium nodiflorum*), Gipsywort (*Lycopus europaeus*), Brooklime (*Veronica beccabunga*), Hemlock Water-dropwort (*Oenanthe crocata*), Hemp-agrimony (*Eupatorium cannabinum*) and Water Forget-me-not (*Myosotis scorpioides*). These swamps may also support Yellow Iris (*Iris pseudacorus*), Water-plantain (*Alisma plantago-aquatica*) and Water Horsetail (*Equisetum fluviatile*), in addition to occasional reeds, large grasses (*Glyceria maxima, Festuca arundinacea*) and sedges. Cover of the latter should, at most, be patchy or dispersed; swamps that are dominated by reeds, and other large grasses or sedges should be considered under reed and large sedge swamps - FS1 above. Tall-herb swamps may have an under storey element with a range of smaller wetland plants.

*Links with EU Habitats Directive Annex I:* Tall-herb swamps can include pockets of the annexed habitat 'Hydrophilous tall herb fringe communities of plains and of the montane to alpine levels (6430)'. In Ireland, however, stands of the latter are usually fragmented and poorly developed.

#### Woodland and Scrub

#### Wet willow-alder-ash woodland WN6

This broad category includes woodlands of permanently waterlogged sites that are dominated by willows (*Salix* spp.), Alder (*Alnus glutinosa*) or Ash (*Fraxinus excelsior*), or by various combinations of some or all of these trees. It includes woodlands of lake shores, stagnant waters and fens, known as carr, in addition to woodlands of spring-fed or flushed sites. Carr is dominated by Rusty Willow (*Salix cinerea ssp. oleifolia*) and Alder (*Alnus glutinosa*). The field layer comprises Creeping Bent (*Agrostis stolonifera*), Meadowsweet (*Filipendula ulmaria*), Common Marshbedstraw (*Galium palustre*), Purple-loosestrife (*Lythrum salicaria*) and Skullcap (*Scutellaria galericulata*). Mosses such as *Climacium dendroides*, *Calliergon cordifolium* and *Homalia trichomanoides* are characteristic. Carr occurs on organic soils and fen peats that are subject to seasonal flooding but remain waterlogged even when flood waters recede.

Woodlands of flushed or spring-fed sites are typically dominated by Alder (*Alnus glutinosa*) or Ash (*Fraxinus excelsior*) and the ground flora is often 'grassy' in appearance with abundant Remote Sedge (*Carex remota*) and Creeping Bent (*Agrostis stolonifera*). Other common components of the field layer include Bramble (*Rubus fruticosus agg.*), Creeping Buttercup (*Ranunculus repens*), Meadowsweet (*Filipendula ulmaria*), Common Marsh-bedstraw (*Galium palustre*), Yellow Pimpernel (*Lysimachia nemorum*) and Lady-fern (*Athyrium filix-femina*). This type of woodland occurs on mineral soils or fen peats, and may occasionally be associated with river banks or lake shores. Note that riparian woodland - WN5 is treated as a separate category.

Also included in this category are woodlands of calcareous spring-fed hollows that are characterised by a mixture of trees including willows (*Salix* spp.), Alder (*Alnus glutinosa*), Ash (*Fraxinus excelsior*) and Downy Birch (*Betula pubescens*). Greater Tussock-sedge (*Carex* 

*paniculata*) dominates the field layer and tussocks may support species of drier land. Common Reed (*Phragmites australis*) may be abundant in open wet areas. The ground surface is often treacherous and water-filled hollows and channels typically support aquatic plants.

#### <u>Turloughs</u>

#### Turloughs FL6

Turloughs are ephemeral lakes that occupy basins or depressions in limestone areas, and where water levels fluctuate markedly during the year. They are virtually unique to Ireland and their greatest concentration is in counties Clare, Galway and Roscommon. The general pattern is to flood in winter and dry out in summer, but there may be other sporadic rises in response to high rainfall. Turloughs normally fill through underground passages and sinkholes but some also have inflowing rivers or streams. Some turlough basins retain standing water in channels, pools or small lakes when flooding subsides. All areas within the normal limit of flooding are considered as part of the turlough habitat. The presence of the distinctive dark moss, *Cinclidotus fontinaloides*, on stone walls or rocks can help to establish this level. Soils of turlough basins can include marls, peat, clays or loams. Large boulders or exposures of bedrock may also be present.

Turloughs support a range of different plant communities that comprise a mixture of aquatic, amphibious and terrestrial species. Plant communities typically form a concentric pattern around the basin; the different zones reflect differences in the extent

and duration of flooding. Wet grassland usually dominates and characteristic species include Creeping Bent (*Agrostis stolonifera*), small sedges (particularly *Carex nigra* and *C. panicea*), Silverweed (*Potentilla anserina*), Meadowsweet (*Filipendula ulmaria*), Creeping Buttercup (*Ranunculus repens*), Marsh Pennywort (*Hydrocotyle vulgaris*) and Amphibious Bistort (*Polygonum amphibium*). Permanent pools, channels and lakes may also be present and may support Common Spike-rush (*Eleocharis palustris*), Water-plantain (*Alisma plantago-aquatica*), pondweeds (*Potamogeton* spp.), and tall reeds such as Common Club-rush (*Schoenoplectus lacustris*).

Links with EU Habitats Directive Annex I: Corresponds to the priority habitat, '*Turloughs (3180)'.

#### 4. Fen floristic and phytosociological classification

Fens can be conveniently classified on floristic grounds (due to chemistry) into rich (basic pH) and poor (acidic pH) fens as mentioned earlier in section 4.1. A summary overview of the phytosociological scheme for the classification of Irish fen vegetation is provided in Table: 4.6.1 (based on the classification scheme of Ó Críodáin & Doyle 1994, and White & Doyle 1982):

Table 4.6.1: Phytosociological classification scheme for Irish Fens

SCHEUCHZERIO-CARICETEA (synonym PARVOCARICETEA) ( <u>Small sedge vegetation of</u> swamps, rheotrophic mires, calcium-rich fens, drainage channels and some acid wet grasslands)
CARICETALIA NIGRAE ( <u>Small-sedge communities of poor fen</u> ) Small-sedge poor-fen vegetation of acid, oligotrophic flushes and soligenous bogs on peat's or peaty mineral soils.
Four associations in Ireland: Carici curtae-Agrostidetum caninae, Caricetum magellanicae, Sphagneto-Juncetum effusi, Drepanoclado exannulati-Caricetum aquatilis
CARICETALIA DAVALLIANAE (Small-sedge communities of rich fen) Vegetation of rich fens on calcareous, alkaline peats.
Four associations in Freland: Carici nigrae-Juncetum articulati, Campylio-Caricetum dioicae, Schoenetum nigricantis, Juncetum subnodulosi
SCHEUCHZERIETALIA PALUSTRIS (Small-sedge vegetation of quaking transition fens) between poor and rich)
Sphagno Caricion Iasiocarpae Two associations in Freland: Sphagneto-Caricetum Iasiocarpae, Calliergo-Caricetum diandrae
PHRAGMITIO - MAGNOCARICETEA (Tall reed and herb vegetation within fens)
PHRAGMITALIA (Vegetation of tall emergent aquatics)
MAGNOCARICETALIA (Vegetation dominated by large sedges often in zones around open water behind reed swamps)
FRANGULETEA ( <u>Shrub-willow vegetation</u> )
SALICETALIA AURITAE (Vegetation of hygrophilic shrubs 1-5 m high, usually found on margins of lakes or slow-flowing streams on peat or mineral soil)
ALNETEA GLUTINOSAE (Fen woodland dominated by Alnus glutinosa, climax vegetation for many fens)
ALNETALIA GLUTINOSAE
MONTIO - CARDAMINETEA (Vegetation of cold springs, commonly dominated by bryophytes)
MONTIO - CARDAMINETALIA Cardamino-Montion ( <u>Vegetation of base-poor, non-calcareous springs</u> )
Cratoneurion (Vegetation of calcareous springs)
Sauraa, White & David 1983, Á Críadáin & David, 1994, O'Cannell, Dvan and Maggawran 1984, Kally &

Source: White & Doyle 1982; Ó Críodáin & Doyle, 1994; O'Connell, Ryan and Macgowran 1984; Kelly & Iremonger 1997. (Phytosociological classification scheme: Class - Caps/bold; Order - Caps /plain; Alliance - lowercase/ bold; Association - lowercase/plain)

A more detailed account of Irish fen types and their plant communities is provided by White & Doyle (1982); Ó Críodáin 1988; Crushell (2000) and Wheeler (1984) inter alia.

Only outline summaries of the main vegetation types are provided here.

#### SCHEUCHZERIO-CARICETEA (synonym PARVOCARICETEA)

Small sedge vegetation of swamps, rheotrophic mires, calcium-rich fens, drainage channels and some acid wet grasslands.

Character species for Ireland: *Carex demissa*, *C. nigra*, *Epilobium palustre*, *Galium palustre*, *Hydrocotyle vulgaris*, *Pedicularis palustris*, *Potentilla palustris*, *Ranunculus flammula* 

#### CARICETALIA NIGRAE

Small sedge communities of poor fen and bog flushes. Vegetation of swamps, rheotrophic mires, some acid grasslands and drainage channels.

Character species: Carex echinata, Viola palustris

Differential species of order and alliance: Sphagnum palustre

Carici curtae-Agrostidetum caninae

Poor fen located in slightly enriched areas on acid peat (water pH range 4.0-5.6), on the fringes of bog streams, pools and lakes and in bog hollows in cutover.

Character species: Agrostis canina, Carex curta, C. echinata

(also Carex nigra, C. rostrata, Eriophorum angustifolium, Holcus lanatus, Juncus bulbosus, Molinia caerulea and Potentilla erecta)

Caricetum magellanicae

Poor fen located in impoverished wet bog hollows (water pH range 3.8-5.0).

Character species: Carex magellanica

(also Carex rostrata, Eriophorum angustifolium, Vaccinium oxycoccus, Sphagnum papillosum, S. palustre, Polytrichum commune)

Sphagneto-Juncetum effusi

Fen vegetation on drainage channels or flushes in acid bogs (water pH range 3.1-6.2). Striking morphology with vegetation reaching 1 m in height, with pronounced Sphagnum carpet.

Character species: Juncus effusus, Sphagnum recurvum

Differential species: Galium saxatile, Polytrichum commune

Drepanoclado-Caricetum aquatilis

Species rich vegetation in which *Carex aquatilis* is dominant. Occurs in river and lake margin vegetation in north of country.

Character species: Carex aquatilis

#### CARICETALIA DAVALLIANAE

Small sedge rich fen communities. Vegetation of mineral-rich fens and base-rich fens on calcareous, alkaline peats.

Character species of order and alliance: Aneura pinguis, Carex lepidocarpa, Dactylorhiza incarnata, Parnassia palustris, Pinguicula vulgaris, Campylium stellatum, Drepanocladus revolvens, Fissidens adianthoides, Scorpidium scorpioides

Carici nigrae-Juncetum articulati

Waterlogged habitats in low lying areas in hollows along mesotrophic lake shores, deep drainage channels in blanket bog areas and neglected drainage channels in rough grassland. Also lakes in machair and wet dune hollows (water pH range 5.5-8.3).

Character species: Carex nigra, Hydrocotyle vulgaris, Juncus articulatus, Ranunculus flammula

(with other commonly occurring Galium palustre, Mentha aquatica, Calliergon cuspidatum)

Differential species against the Plantaginetea majoris: *Caltha palustris, Carex rostrata, Eleocharis palustris, Equisetum fluviatile, Lythrum salicaria, Myosotis laxa, Menyanthes trifoliata, Phragmites australis* 

#### Campylio-Caricetum dioicae

Vegetation typical of grazed calcareous flushes, sometimes surrounded by relatively calcifuge vegetation (water pH range 4.6-7.5).

Character species: Carex demissa, C. dioica, C. hostiana, Eleocharis quinqueflora

(with other commonly occurring *Carex nigra*, *C. echinata*, *C. panicea*, *C. pulicaris*, *Anagallis tenella*, *Eleocharis multicaulis*, *Hydrocotyle vulgaris*, *Juncus bulbosus*, *Ranunculus flammula* and *Succisa pratensis* with some acid indicators such as *Eriophorum angustifolium*, *Molinia caerulea* and *Potentilla erecta*)

Differential species within the Caricion davallianae: Carex echinata, Juncus bulbosus

#### Schoenetum nigricantis

*Schoenus nigricans* dominated base-rich fens and in well established flushes that are ungrazed, where tussock formation is typical (water pH range 5.5-8.1).

Character species: Schoenus nigricans

#### Juncetum subnodulosi

*Juncus subnodulosus* dominated calcium-rich fen vegetation (water pH range 5.6-8.5), typical of the contact zone between Cladietum marisci and the Schoenetum nigricantis.

Character species: Juncus subnodulosus

(with other commonly occurring *Carex lepidocarpa*, *C. panicea*, *Galium palustre*, *Mentha aquatica*, *Molinia caerulea* and *Ranunculus flammula*)

#### SCHEUCHZERIETALIA PALUSTRIS

Sphagno Caricion Iasiocarpae

Vegetation of wet hollows on bogs. Small-sedge vegetation of quaking transition fens between poor and rich.

Character species: Carex limosa, Rhynchospora alba, Menyanthes trifoliata, Sphagnum cuspidatum, Sphagnum apiculatum, Sphagnum subsecundum, Cladopodiella fluitans

#### Sphagneto-Caricetum lasiocarpae

Floating quaking-bog vegetation, usually confined to the waterlogged marginal areas around areas of acid peat or fens (water pH range 3.8-5.8). *Carex lasiocarpa* prominent species, along with *Carex limosa, Hydrocotyle vulgaris, Menyanthes trifoliata, Molinia caerulea, Myrica gale, Potentilla palustris,* and *Ranunculus flammula.* 

Character species: Carex lasiocarpa

#### Differential species: Myrica gale, Sphagnum auriculatum

#### Calliergo gigantei-Caricetum diandrae

Floating or quaking mire vegetation, calcicole in character (water pH range 5.0-7.5), rich in pleurocarpus mosses, found in seepage areas around fens.

Character species: Carex diandra, Bryum pseudotriquetrum, Calliergon giganteum

Differential species within the alliance: Carex Iasiocarpa

(with other commonly occurring *Carex diandra*, *C. rostrata*, *C. lasiocarpa*, *C. nigra*, *Scorpidium scorpioides*, *Galium palustre*, *Hydrocotyle vulgaris*, *Menyanthes trifoliata*, *Potentilla palustris*, *Calliergon cuspidatum*)

#### PHRAGMITIO - MAGNOCARICETEA

Tall clonal reed and sedge and herb vegetation. Species poor or mono dominant stands with pronounced mosaic structure. Swampy areas near lakes, rivers, streams and within fens

#### PHRAGMITALIA

Vegetation of tall emergent aquatics, mostly poor in species, often mono dominant, stagnant to slightly running water 0.2 to 3 m deep.

Character species: *Phragmites australis, Typha latifolia, Iris pseudacorus, Sparganium erectum* 

#### MAGNOCARICETALIA

Vegetation dominated by large sedges, eutrophic to mesotrophic water, often in zones around open water behind reed swamps of the alliance Phragmition.

Character species: *Carex vesicaria*, *C. paniculata*, *C. acuta*, *C. aquatilis*, *Galium palustre*, *Poa palustris*, *Cladium mariscus* 

#### **FRANGULETEA**

Shrub-willow vegetation growing on minerotrophic peat or mineral soil where there is a constant, high water table. Water may be oligotrophic to eutrophic.

#### SALICETALIA AURITAE

Vegetation of hygrophilic shrubs 1-5 m high, usually found on margins of lakes or slowflowing streams on peat or mineral soil, poor to moderately rich, continually high water table.

Character species: Salix aurita, Salix atrocinerea, Frangula alnus, Myrica gale

#### ALNETEA GLUTINOSAE

Fen woodland dominated by *Alnus glutinosa*, climax vegetation for many fens.

#### ALNETALIA GLUTINOSAE

Character species: Alnus glutinosa, Thelypteris palustris

#### MONTIO - CARDAMINETEA

Vegetation of springs fed by water of more or less even temperature, commonly dominated by bryophytes.

#### MONTIO - CARDAMINETALIA

Diagnostic species of class and order: Cardamine amara, Saxifraga stellaris, Epilobium alsinifolium, Brachythecium rivulare

#### Cardamino - Montion

Spring vegetation fed by base-poor waters often in western and mountain areas

Diagnostic species: Stellaria alsina, Epilobium obscurum, Chiloscyphus polyanthus var. rivularis

#### Differential from Cratoneurion: Pellia epiphylla

(with other species occurring *Philonotis fontana*, *Saxifraga stellaris*, *Montia fontana ssp. rivularis*, *Montia fontana ssp. fontana*, *Dicranella palustris*, *Scapania uliginosa*, *Chrysosplenium oppositifolium*, *Mnium punctatum*)

#### Cratoneurion

Vegetation of calcareous springs fed by mineral rich water

Character species: Cratoneuron filicinum, Philonotis calcarea, Saxifraga aizoides

#### Differential from Cardamino-Montion: Equisetum telmateia

(with other species occurring *Saxifraga hirculus*, *Cardamine pratensis*, *Holcus lanatus*, *Calliergon cuspidatum*, *Sagina nodosa*, *Plagiomnium ellipticum*, *Galium palustre*, *Potamogeton polygonifolius*, *Juncus bulbosus*, *Aneura pinguis*, *Caltha palustris* and the rarer species: *Homalothecium nitens*, *Drepanocladus vernicosus*, *Drepanocladus exannulatus var. rotae*, *Sphagnum teres*)

# Appendix 14: Habitat areas mapped on the sites surveyed during the Monaghan Fen Survey 2007

Site code and site name with calculation of total site survey area (ha), for sites examined during the Monaghan Fen Survey 2007.

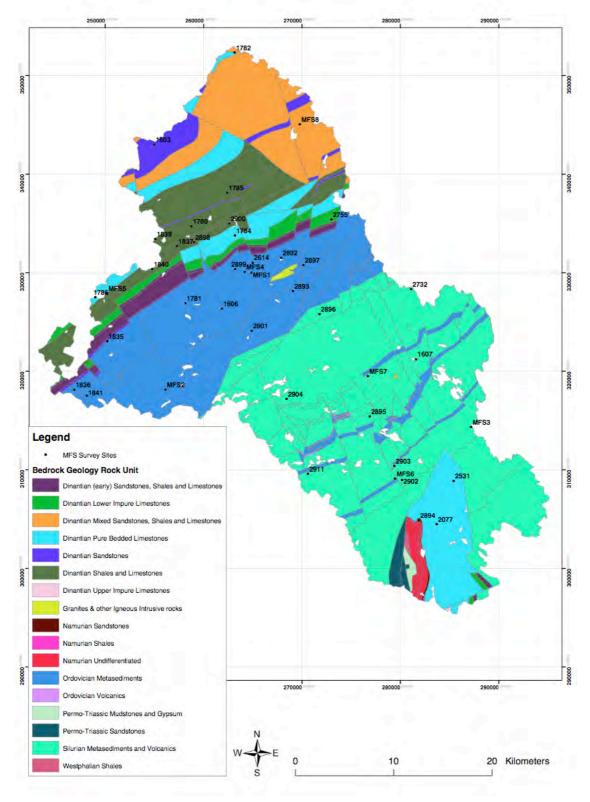
Abbreviated habitat codes are those used in Fossitt, J., 2000, A Guide to Habitats in Ireland, The Heritage Council, Ireland.

Area figures presented are hectares, while the length of river types (FW1; FW2; FW4) are given in meters.

Habitat abbreviations and Fossitt (2000) title:

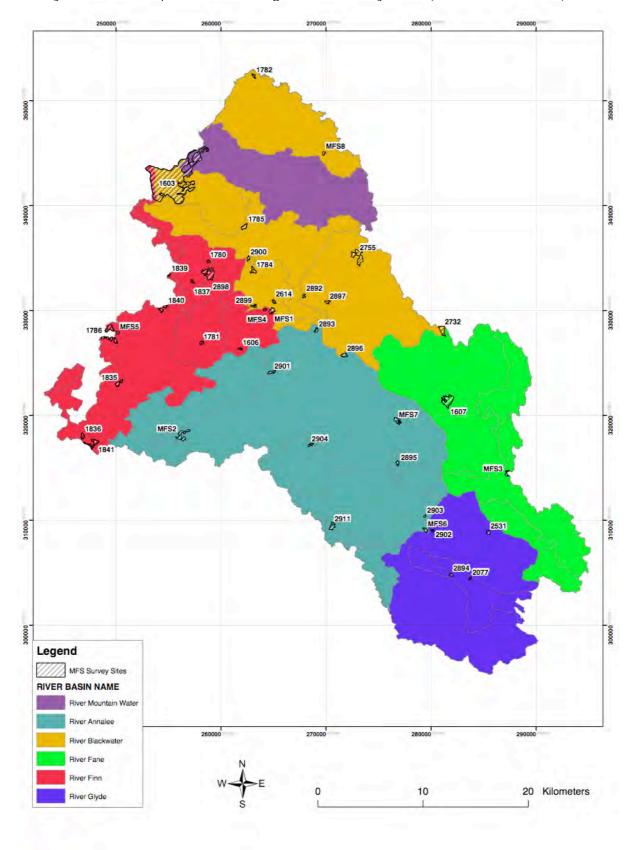
PF1 – Rich fen and flush (two subtypes PF1 Alkaline fen and PF1 Cladium fen were distinguished during the current survey and the mapping exercise)

- PF2 Poor fen and flush
- PF3 Transition mire and quaking bog
- FS1 Reed and large sedge swamp
- PB4 Cutover bog
- FL Freshwater
- FL1 Dystrophic lakes
- FL2 Acid oligotrophic lakes
- FL3 Limestone/marl lakes
- FL6 Turlough
- GA1 Improved agricultural grassland
- GA2 Amenity grassland (improved)
- GS4 Wet grassland
- GM1 Freshwater marsh
- WN2 Oak-ash-hazel woodland
- WS1 Scrub
- WD1 (Mixed) broadleaved woodland
- WD4 Conifer plantation
- WN6 Wet willow alder ash woodland
- WN7 Bog woodland
- ED2 Spoil and bare ground
- FW4 Drainage ditches
- FW2 Depositing lowland rivers
- FW1 Eroding/upland rivers
- WL1 Hedgerows


This appendix is available as Excel file on the CD ROM accompanying this report.

Train from the field of the field			Total Area of																						
The sector from the sect			Mappe PF1																			PW	4 FW2	FW1 V	VL1 Lonath
Matrix for the sector of a constraint o			Habitat Fen				FS1				FL3					GM1							() (m))		m))
Mathematication         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1		7.3	0.0																						
Matrix (a)         Constrained (a)		0.1 0	4 ω.α		0.45				70 1					0.34	4.6			r 7 0	Ö			0.33			499.18
Matrix (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		о п И п	n C 0 C			Z.   4			00.1						0. 4	_	-04	0.07		(7) 					
matrix         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <td></td> <td>12.3</td> <td>12.0</td> <td></td> <td></td> <td>0.21</td> <td></td> <td></td> <td>C</td> <td>77</td> <td></td> <td></td> <td></td> <td></td> <td>4.8</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>5.69</td> <td>0.31</td> <td></td> <td></td> <td></td>		12.3	12.0			0.21			C	77					4.8						5.69	0.31			
Matrix constraint         11         0.0         1.1         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0		6.4	7.7			- 1			þ	i.			0.07		6			4.28			5		88.89	691.50	372.67
Multi-sectories         13         44         13         44         13         44         13         44         13         44         13         44         13         44         13         44         13         44         13         44         13         44         13         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44           Reserved		11.1	10,2			4.15								0.65	2.1				0						
Mathematical and constant         10 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		12.9	12.9			3.94									3.9			0.15					81.29		1720.31
Controllie         C1         C2         C3         C4         C3         C4         C4 <thc4< th="">         C4         C4</thc4<>		18.8	18.7			1.05		0.48	4.54						1.0			1.95		3.48					
Mathematical memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial memorial mem		22.1	24.7		2.56				8.09						2.4	7	3.11	7.05				-	24.13		
Interfacional metalence         2.2         4.0         7.2         1.0         7.3         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0		5.1	4.8			1.93			0.13						0.5					2.00					126.04
International matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed matrixed ma		42.7	42.2				16.26		7.92					8.65	1.3					8.01					
Image: Mark Mark Mark Mark Mark Mark Mark Mark		32.7	32.6							2.05	~~			19.37	0.4			5.23		1.34					
Mote and a constant of a		34.3	33.9 0 E			11.88	~	3.40							9.4	6		8.09		1.02					
And control         21         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 </td <td></td> <td>3.2</td> <td></td> <td>č</td> <td>4 F C</td> <td></td> <td>~</td> <td></td>		3.2		č	4 F C		~																		
International constraints         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td></td> <td>1 00.00</td> <td></td> <td>40</td> <td>7</td> <td></td>		1 00.00		40	7																				
Current fund         64         63         10         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         115         116         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         117         1		6.8	0 6 0 6											1.32	ю Ю			J	J.85						212.53
Currention Interview (current 0 1)         Constraine 1 1		6.4	6.3			1.50			0.47						2.0					1.15		-	55.33		593.09
Multiculut         00         210         01         210         213         213         213         213         213         213         213         213         213         213         213         213         213         213         213         213         213         213         213         213         213         213         213         213         213         213         213         213         213         213         213         213         213         213         213         213         213         213         213         213         213         213         213         213         213         213         213         213         213         213         213         213         213         213         213         213         213         213         213         213         213         213         213         213         213         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         214         21		6.1	0.0																						
Intervint (0004)         31         00         0.24         1.44         1.44         1.44         1.65         1.44         1.65         1.44         1.65         1.44         1.65         1.44         1.65         1.44         1.65         1.44         1.65         1.44         1.65         1.44         1.65         1.44         1.65         1.44         1.65         1.44         1.65         1.44         1.65         1.44         1.65         1.44         1.65         1.44         1.65         1.44         1.65         1.44         1.65         1.44         1.65         1.44         1.65         1.44         1.65         1.44         1.65         1.44         1.65         1.44         1.65         1.44         1.65         1.44         1.65         1.44         1.65         1.44         1.65         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.44         1.65         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45         1.45		80.9	72.0		8.74									2.03	7.6.					22.20			38.90		
Matrix for control currers         77         70         71         71         74         71         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73         73 <th< td=""><td></td><td>3.1</td><td>3.0</td><td>0.2</td><td>24</td><td></td><td></td><td></td><td></td><td></td><td>0.83</td><td></td><td></td><td></td><td>0.5</td><td>3</td><td></td><td></td><td></td><td>1.44</td><td></td><td>2</td><td>05.75</td><td></td><td>73.62</td></th<>		3.1	3.0	0.2	24						0.83				0.5	3				1.44		2	05.75		73.62
Matrix construction         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70 <td></td> <td>L. L</td> <td></td> <td></td> <td>,</td> <td></td> <td>5</td> <td></td> <td></td> <td></td> <td>500</td> <td></td> <td>7</td> <td>r 7</td> <td>7</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>c</td> <td>00 10</td> <td></td> <td>000</td>		L. L			,		5				500		7	r 7	7							c	00 10		000
contaction of contact         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0		0.00			_		0.10		3 37		0.0			0 28	14./	_							0 <del>4</del> .50		24.02
1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1		6.6	0.0 9.9		1.45	~			10.0					7.82	0.2	7				0.31		0			1540.61
Instant         14         1         1         5         1         5         1         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         1         5         5         5         5         5         1         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5<		22.4	20.7						2.03					0.48	3.7	-		8.37					70.25		
Listement         56         23         146         061           Listement         57         733         591         607         325         1017           Listement         71         733         591         607         325         1128         100           Restriction         128         128         128         128         1128         128         129         511         128         129         511         128         128         128         128         128         128         128         128         128         128         128         128         128         128         128         128         128         128         128         128         128         128         128         128         128         128         128         128         128         128         128         128         128         128         128         128         128         128         128         128         128         128         128         128         128         128         128         128         128         128         128         128         128         128         128         128         128         128         128         128         128		14.9	15.1											4.74	1.6	5							98.99		799.13
1         2         2         6         0         3         5         100         11.26         100         51         100         51         100         51         100         51         100         51         100         51         100         51         100         51         100         51         100         51         100         51         100         51         100         11.49         100         51         100         51         100         51         100         51         100         51         100         51         100         51         11.49         100         51         100         51         100         51         100         51         100         51         100         51         100         51         100         51         100         51         100         51         100         51         100         51         100         51         100         51         100         51         100         51         100         51         100         51         100         51         100         51         100         51         51         51         51         51         51         51         51 <th< td=""><td></td><td></td><td>2.3</td><td></td><td>1.46</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>			2.3		1.46																				
Muchanity Muchanity Muchanity Muchanity Muchanity Muchanity Muchanity Muchanity Muchanity Muchanity Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Muchanity Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry Matry			2.7			2.68		L C C	1 7 7											0		00	C L L		
Matrix		/5./ 5.1	/ 3. 3 F O			19.0 20.0		3.25	10.17											11.26		1.00	0.166	-	70 001
Multamote Like (south)         161         150         238         275         667         2181         617         2181         617         2181         618         2181         618         2181         618         2181         618         2181         618         2181         618         2181         618         2181         618         2181         618         2181         618         2181         2181         2181         2181         2181         2181         2181         2181         2181         2181         2181         2181         2181         2181         2181         2181         2181         2181         2181         2181         2181         2181         2181         2181         2181         2181         2181         2181         2181         2181         2181         2181         2181         2181         2181         2181         2181         2181         2181         2181         2181         2181         2181         2181         2181         2181         2181         2181         2181         2181         2181         2181         2181         2181         2181         2181         2181         2181         2181         2181         2181         2181 <t< td=""><td></td><td>12.8</td><td>12.8</td><td></td><td></td><td>01.1</td><td>_</td><td></td><td></td><td></td><td></td><td>12.82</td><td></td><td></td><td>5</td><td>4</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>0.40</td></t<>		12.8	12.8			01.1	_					12.82			5	4				-					0.40
Multachossenture weiter Fish weiter Fish we			15.9				2.60		3.88						2.7	2				6.67					
MMENTEN         3.6         0.0           MMENTEN         3.2         12           MMENTEN         5.2         5.2         5.2           ANNUCCIO         5.2         5.2         5.2           ANNUCCIO         5.2         5.2         1.08         0.18         0.31           ANNUCCIO         5.2         5.2         1.08         0.18         0.31         1.01           MERTENDAKE         0.0         1.61         0.31         2.99         2.65         8.87         0.91         1.01         480.12           MERTENDAKE         8.3         0.0         1.61         0.31         2.99         2.65         9.91         1.01         1.05         1.05         1.01         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.05         1.0			5.6			0.44			1.81					0.50	1.7	6				0.25		2	18.16		
RESTRETE LOUGH         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.2         7.3         7.3         7.3         7.3         7.3         7.3         7.3         7.3         7.3         7.3         7.3         7.3         7.3         7.3         7.3         7.3         7.3         7.3         7.3         7.3		3.6	0.0																						
Restriction         5.2         5.2         1.08         0.14         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013 <th< td=""><td></td><td>7.2</td><td>7.2</td><td></td><td></td><td></td><td></td><td></td><td>4.81</td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td>2.40</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		7.2	7.2						4.81						1				2.40						
ABC       0.11       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01			2.2			1.08		0.14		2.95				0.13	0.5	,				0.34			0.00		
Instantion       0.0       0.0       0.0       0.0       0.0       0.0         Instantion       8.1       0.0       15       1.1       16.8       76.2       47.4       7.3       49.4       0.3       5.1       15.1       0.0       0.0         Instantion       8.1       0.0       15       1.1       16.8       76.2       47.4       7.3       49.4       0.3       5.1       15.1       671.5       0.0         Instantion       58.1       58.1       5.1       1.6       74.2       9.9       4.8       350.1       551.0       671.5         AFR       58.1       5.1       1.5       1.1.5       12.8       0.1       85.2       2.9       102.1       23.6       5.0       39.3       5.1       51.0       671.5         AFR       53.1       551.0       671.5       1.2       4.0       74.2       9.9       4.8       350.1       51.6       51.6       51.6       51.6       51.6       51.6       51.6       51.6       51.6       51.5       51.6       51.5       51.6       51.5       51.6       51.5       51.6       51.5       51.6       51.6       51.6       51.6       51.6 <td></td> <td></td> <td>10.8</td> <td></td> <td></td> <td></td> <td>0.18</td> <td></td> <td>0.31</td> <td></td> <td>C0.2</td> <td></td> <td></td> <td>8.8/</td> <td>0.9</td> <td>_</td> <td></td> <td></td> <td></td> <td>3.85</td> <td></td> <td>4 -</td> <td>80.12 DE 98</td> <td></td> <td></td>			10.8				0.18		0.31		C0.2			8.8/	0.9	_				3.85		4 -	80.12 DE 98		
OSSY CROSS FIN         B.1         O.0           TOTAL AREA / LENGTH         1919.0         580.6         1.5         1.1         168         76.2         47.4         7.3         49.4         0.3         5.1         115         12.8         0.1         85.2         5.0         39.3         5.1         4.0         74.2         9.9         4.8         350.21         551.0         691.5           AREA         58.1         ESHBRACK         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7 </td <td></td> <td>000</td> <td></td> <td></td> <td></td> <td></td> <td>0.</td> <td></td> <td>0.0</td> <td></td> <td>4. 0</td> <td>-</td> <td>00.00</td> <td></td> <td></td>		000					0.		0.0												4. 0	-	00.00		
TOTALAREA / LENGTH     1919.0     580.6     1.5     1.1     1.6.8     7.3     49.4     0.3     5.1     1.5     1.2     0.1     85.2     2.9     102.1     23.6     5.0     39.3     5.1     4.0     74.2     9.9     4.8     350.2.1     551.0     691.5       AREA     581.1     580.6     1.5     1.1     16.8     7.3     49.4     0.3     5.1     15.1     23.6     5.0     39.3     5.1     4.0     74.2     9.9     4.8     350.1     551.0     691.5       AREA     581     581     581     581     581.1     581.1     581.1     581.1     581.1     581.1     581.1     581.1     581.1     581.1     581.1     581.1     581.1     581.1     581.1     581.1     581.1     581.1     581.1     581.1     581.1     581.1     581.1     581.1     581.1     581.1     581.1     581.1     581.1     581.1     581.1     581.1     581.1     581.1     581.1     581.1     581.1     581.1     581.1     581.1     581.1     581.1     581.1     581.1     581.1     581.1     581.1     581.1     581.1     581.1     581.1     581.1     581.1     581.1		8.1	0.0																						
AREA ESHBRACK ESHBRACK ESHBRACK ESHBRACK ESHBRACK ESHBRACK ESHBRACK ESHBRACK ESHBRACK ESHBRACK ESHBRACK		1919.0	580.6 1			76.		7.3	4			12.		2	6	23.	ù		-	0 74.	9.9		551	691.	7001.5
		58 1																							
	FSHBDACK	1.00																							
	FSHBRACK	38.1																							
	ESHBRACK	36.2																							
	FSHBRACK	59.6																							
	ESHBRACK	57.8																							
	ESHBRACK	14.2																							
	ESHBRACK	13.9																							
	ESHBRACK	18.5																							
	ESHBRACK	3.0																							

Monaghan Fen Survey 2007 Appendix 14. Habitat areas mapped on the sites surveyed during the Monaghan Fen Surv


## Appendix 15: Geophysical Maps of County Monaghan

Appendix 15 A: The Bedrock Geology Map of County Monaghan, showing the location of sites surveyed in detail as part of the Monaghan Fen Survey 2007 (Ordnance Survey of Ireland).



Appendix 15 B: The Quaternary Deposits Map of County Monaghan, showing the location of sites surveyed in detail as part of the Monaghan Fen Survey 2007 (after Geraghty et al 1997).





Appendix 15 C: The River Basin Map of County Monaghan, showing the location of sites surveyed in detail as part of the Monaghan Fen Survey 2007 (after Meehan 2004).

## Appendix 9: Glossary of Terms

ABIOTIC - Of or relating to the non-living components of a habitat or ecosystem

ACIDIFICATION - The detrimental effect of acid rain on soils and freshwater.

AFFORESTATION - The planting of trees (usually conifers) over an area of previously unplanted round.

ALTITUDE - Vertical height above sea level.

ALLUVIAL - Of or relating to silty deposits transported by water, or occurring on river flood plains

AMPHIBIANS – A vertebrate group whose members spend part of their life cycle in water and part on land e.g. Frog.

ANNEX 1 - of the EU Habitats Directive, lists habitats including priority habitats for which SACs have to be designated.

ANNEX 2 - of the EU Habitats Directive is a list of species for which SACs have to be designated.

ANNUAL PLANT - Plant that completes its life cycle within a single growing season

AQUATIC ENVIRONMENT – Rivers, streams, lakes, ponds, springs and features that depend on natural waters e.g. marsh, bogs and wetlands.

ASIs - Areas of Scientific Interest. Areas that were identified in the 1970s as being of conservation interest. The NHA designation developed from ASIs.

 $\mathsf{BASE}\ \mathsf{POOR}\ \mathsf{SOILS}\ \mathsf{-}\ \mathsf{Soils}\ \mathsf{that}\ \mathsf{only}\ \mathsf{slowly}\ \mathsf{release}\ \mathsf{the}\ \mathsf{dissolved}\ \mathsf{chemicals}\ \mathsf{or}\ \mathsf{minerals}\ \mathsf{contained}\ \mathsf{within}\ \mathsf{them}.$ 

BASIN - A depressed area of the Earth's surface, in which sediments accumulate.

BI ODI VERSI TY – A general term used to describe all aspects of biological diversity, including: the number of species present in a given environment; the genetic diversity present within a species; the number of different ecosystems present within a given environment.

BIOTOPE - An environmental region, defined by certain conditions characteristic organisms that typically inhabit it. Combination of the physical habitat and its recurring community of animals and plants

BIOTIC - Of or relating to the living components of a habitat or ecosystem

BIRDS DIRECTIVE (Council Directive 79/ 409/ 2nd April 1979) - Under this Directive Ireland is required to conserve the habitats of two categories of wild birds: 1) Listed rare and vulnerable species and 2) Regularly occurring migratory species. The Directive also obliges Ireland to conserve wetlands, especially those of international importance and regulates the hunting and trading of wild birds. It was transposed into Irish legislation by the EU (Natural Habitats) Regulations, 1997.

BLANKET BOG - Bogs which carpet the landscape, following the underlying topography. They can cover extensive areas along the west coast and on uplands throughout the country.

BOG - General term for ombrotrophic mire or peatland (but sometimes used colloquially for other wetland type e.g. marsh, fen). A peat filled or covered area.

BORD NA MÓNA - Irish peat extraction board, founded by the Irish state in 1946.

BOULDER - Large rock that is greater than 256 mm in diameter

BRACKISH - Where salinity is intermediate between that of freshwater and sea water

BRYOPHYTES - A group of simple non-vascular spore-bearing green plants comprising the mosses, liverworts and hornworts.

CALCAREOUS - Rich in calcium salts (lime-rich), or pertaining to limestone or chalk

CALCICOLOUS - Organisms that have an affinity for habitats that are rich in calcium (lime-loving)

CALLOW - Wetland areas at edge of large rivers, that were or are still seasonally regularly flooded. May contain fen vegetation, but often with a peat layer less than 40 cm deep.

CATCHMENT - An area of land draining to a defined point. The term river catchment refers to the area of land that drains into a particular river system.

CLAY - Very fine sediment particles that are less than 0.004 mm in diameter - component of mud

COLONI SATION - The entry and spread of a species into an area, habitat or population from which it was formerly absent.

COMMONAGE – An area of land which are undivided but are owned by more than one person / or the rights to use the land are owned by more than one person.

COMMUNITY - a well-defined assemblage of plants and/or animals, clearly distinguishable from other such assemblages.

CONSERVATION STATUS - The sum of the influences acting on a habitat and its typical species that may affect its long term distribution, structure and functions. Also refers to the long-term survival of its typical species within the European territory of the Member States.

CORINE - An information and mapping system, developed within the context of the Commission of the European Communities biotope project, which is used as a tool for the description of sites of importance for nature conservation in Europe. It catalogues recognisable communities of flora and fauna. The primary objective of this catalogue is to identify all major communities whose presence contributes to the conservation significance of a site. Included in this list of communities are interesting but rare natural or near-natural communities as well as the more widespread semi natural ones.

CUTAWAY BOG – Areas of bog which have been systematically cut, by mechanical means. Any peat remaining has no economic value. Underlying mineral soil or marl layer or bedrock often exposed. Cutaway areas are normally a mosaic of cut areas, drainage ditches, flooded area, uncut higher banks of peat, scrub, grassland etc.

CUTOVER BOG – Areas of bog which have been previously cut, although not down to the marl layer or bedrock. Often using traditional hand-cutting methods. Cutover areas are normally a mosaic of cut areas, face banks, pools, drainage ditches, uncut areas of peat, scrub, grassland etc.

DRAW-DOWN ZONE - Area exposed when water levels are reduced, normally as a result of abstraction in the case of reservoirs, or of drying out in the case of ponds

DIVERSITY - see biodiversity.

DOMESTIC PURPOSES - Used in relation to the cutting of peat. Peat that is cut for domestic purposes is not for commercial sale and is cut at the rate of one year's supply for a household per year.

DRUMLIN - Streamlined, oval-shaped hill formed by glacial activity and usually comprising unsorted sediment, or till

DYSTROPHIC – shallow lake that is a dark brown colour due to the presence of organic material, and are of low biological productivity and have poor light penetration

ECOLOGY - The study of the interactions between organisms, and their physical, chemical and biological environment.

EDAPHIC - Of the soil, or influenced by the nature of the soil

ENVIRONMENT – The biological and physical conditions in which an organism lives. EPA – Environmental Protection Agency

EMERSED - Above the level of the water, or exposed to air

EPIBIOTA - Surface-dwelling animals and plants

**EPIFAUNA** - Surface-dwelling animals

EROSION - The processes whereby the materials of the Earth's crust are dissolved, or worn away and simultaneously moved from one place to another by natural agencies which include weathering, solution, corrosion and transportation.

EUROPEAN BIRDS DIRECTIVE (79/ 409/ 2nd April 1979) - See Birds Directive.

EUTROPHIC - Biological effects of an increase in plant nutrients on aquatic systems

ESKER - Long, sinuous, steep-sided ridge, comprising layers of sediments (cross-bedded sands and gravels) laid down by glacial melt waters

EUTROPHIC - Having high levels of primary productivity or nutrients

FAUNA - Animal life.

FAVOURABLE CONSERVATION STATUS - The conservation status of a natural habitat will be taken as "favourable" when: its natural range and areas it covers within that range are stable or increasing, and the specific structure and functions which are necessary for its long term maintenance exist and are likely to continue to exist for the foreseeable future, and the conservation status of its typical species is favourable.

FEN - General term for minerotrophic mires, formed under the influence of groundwater.

FLORA - plant life.

FORMATION – A geological term for a body of rocks having easily recognised boundaries that can be traced in the field, and large enough to be represented on a geological map as a practical and convenient unit for mapping and description.

GEOMORPHOLOGY – The study of the form and structure of the landscape, which is shaped by the underlying geology.

GLEY - Soil type subject to water logging because of the high content of impermeable clays

GRAVEL - Sediment particles that are between 4-16 mm in diameter

HABITAT - Refers to the environment defined by specific abiotic and biotic factors, in which a species lives at any stage of its biological cycle. In general terms it is a species home. In the Habitats Directive this term is used more loosely to mean plant communities and areas to be given protection.

HABITATS DIRECTIVE - (Council Directive 92/43/EEC). The Directive on the conservation of Natural Habitats and of Wild Flora and Fauna. This Directive seeks to legally protect wildlife and its habitats. It was transposed into Irish legislation by the EU (Natural Habitats) Regulations, 1997.

HAND CUTTING OF PEAT - Refers to traditional cutting of peat using a slean or spade.

HERBACEOUS - Of or relating to non-woody plants or vegetation

HUMIC ACID - Dark brown acid derived from humus or partially decomposed organic material in soils, particularly peats

HUMMOCK - A small hillock/mound. Often used to describe the surface of active bogs where the ground forms a pattern of mounds, hollows and pools. Such hummocks commonly comprise bog mosses.

HYDROLOGY - The movement of water through a catchment area including freshwater and seawater inputs, water level changes and drainage mechanisms which are all influenced by the underlying geology.

HYPERTROPHIC - Over-enriched with nutrients, polluted

IMMERSED - Submerged by water

IPCC - Irish Peatland Conservation Council. Non-governmental organisation established in 1982 to promote the protection of Irish bogs and fens.

LAGG - Fringing wetland area around raised bogs where groundwater mixes with bog water, and where vegetation communities are transitional between bog and fen

LATITUDE – The angular distance measured in degrees north or south of the equator.

LICHENS – An organism that consists of a fungus growing in close association (symbiosis) with an alga.

LOAM - Friable or crumbly soil comprising sand, silt, clay and organic matter

MANAGEMENT - a) Controlling processes within a site (this can be actively carrying out work or can be doing nothing), preferably in accordance with a conservation plan. - b) The practical implementation of the management plan. - c) Undertaking any task or project identified in the management plan, including the identification of new opportunities.

MARGINAL VEGETATION - At or near the margin or border, often used to describe the vegetation at the edge of a lake or river.

MARL - White calcareous clay or precipitate with a high proportion of soft calcium carbonate, usually found as an alluvial deposit

MARSH - Wet grassy habitats, with more or less permanent standing water at or near ground level, with little or no peat formation. Generally quite species rich.

MECHANICAL PEAT EXTRACTION - Refers to the use of machinery to cut peat. This includes extrusion cutting such as by sausage machine (e.g. Difco) or any other type of mechanical cutter (e.g. Hopper).

MESOTROPHIC – freshwater lake systems containing moderate concentrations of mineral nutrients, such as phosphorous, calcium and nitrogen. Having moderate levels of primary productivity or nutrients (intermediate between oligotrophic and eutrophic)

MICROTOPOGRAPHY - Very small-scale variations in the height and roughness of the ground surface.

MINEROTROPHIC MIRE - A peatland system that is fed by ground water.

MIRE - A general term applied to peat producing ecosystems. cf. bog, peatland.

MONITORING – A repeat or repeats of a survey using the same methodology. Designed to look for or measure specific changes and the rate or extent of change. Used to check the "health" quantity or quality of a habitat or species.

MONTANE - Of or relating to mountains

MOOR - Shallow acid peatland less than 40 cm peat depth, often resting on iron pan and podzol; and dominated by ericaceous vegetation.

MOR HUMUS - Organic soil that is acid and comprises layers of plant litter.

MORAINE - Ridge or mound of unsorted mineral material deposited by glaciers.

MOSAIC - Used to describe habitats that occur together and cannot easily be mapped separately. Complex pattern or patchwork of habitats or species occurring in intimate associations.

MUD - Silt/clay fraction where sediment particles are less than 0.063 mm in diameter

MULTIPLE PRIVATE OWNERSHIP- Lands that are divided into areas which are privately owned. There must be more than one private landowner under this heading. (lands in commonage are not described under this heading).

NATIONAL PARKS AND WILDLIFE SERVICE (NPWS) – the section of the Environment Infrastructure and Services division of the Department of Environment, Heritage and Local Government with responsibility for nature conservation and implementation of Government conservation policy as enunciated by the Minister for the Environment, Heritage and Local Government.

NATURA 2000 - A network of sites across the European Community, selected for the purpose of conserving natural habitats and species of plants and animals which are rare, endangered or vulnerable in the European Community. SACs and SPAs form the Natura 2000 network.

NATURAL HABITAT - Can be aquatic or terrestrial areas distinguished by geographic, abiotic and biotic features, whether entirely natural or semi-natural.

NHAs - Proposed Natural Heritage Areas. These are areas that are important for wildlife conservation. Some of these sites are small, such as roosting areas for rare bats; others can be large such as a blanket bog or a sand dune system.

NNR - National Nature Reserve. Areas set aside for their conservation value by the Minister for the Department of Environment, Heritage and Local Government.

NOTABLE SPECIES - Plants or animals which are worthy of mentioning either because they are particularly typical of a habitat, or because they are rare/ scarce/ atypical.

NPWS - National Parks and Wildlife Service (see above)

OLIGO – Prefix denoting few or little

OLI GOTROPHIC - Applied to waters that are relatively low in nutrients, as in lakes which are low in dissolved minerals and which can only support limited plant growth. Having low levels of primary productivity or nutrients

OMBROTROPHIC - Rain-fed, of or relating to vegetation or ecosystems that receive most of their nutrients from precipitation

OS – Ordnance Survey

PEAT - Organic soil material saturated by water, composed of the partial decomposed remains of plants and mosses.

PEAT CUTTING BY HAND - See hand cutting of peat.

PEAT CUTTING BY MACHINE - See mechanical peat extraction.

PEBBLE - Sediment particle, or stone, that is between 16-64 mm in diameter

PERIPHERY - Distant from the centre, on the fringe/edge.

pH - A quantitative expression for the acidity or alkalinity of a solution or soil. The scale ranges from 0-14: pH 7 is neutral, less than 7 is acidic and greater than 7 is alkaline. PLATEAU - A wide, mainly level area of elevated land.

PHYTOSOCIOLOGY - Study and classification of plant communities based primarily on floristic considerations

PODZOL - Acid soil with an organic layer over a highly leached mineral layer

PRECIPITATION - Water moving from the atmosphere to the ground in the form of rain, fog, mist, snow or hail.

PRIORITY HABITAT - A subset of the habitats listed in Annex I of the EU Habitats Directive. These are habitats which are in danger of disappearance and whose natural range mainly falls within the territory of the European Union. These habitats are of the highest conservation status and require measures to ensure that their favourable conservation status is maintained.

RARE - An ecological term applied to distribution of species when assessed on a national grid reference system. The assessment is made on the basis of the number of occupied 10 km National Grid squares. A species is described as rare if has been recorded in to 3-10, 10 km squares.

RED DATA BOOK – A register of threatened species that includes definitions of degrees of threat.

RED DATA BOOK (lower plants) - This Red Data Book deals with Stoneworts which are recognised as a separate class, Characea, of the Green Algae Chlorophyta). Many of these species are threatened by loss of habitat or pollution.

RED DATA BOOK 1 (vascular plants) This Red Data Book deals with rare and threatened flowering plants and ferns of Ireland with an account of their present distributions and conservation status.

RED DATA BOOK 2 (mammals, birds, amphibians and fish) - identifies those species threatened in Ireland or those species whose populations are considered to be of international importance, though not necessarily threatened in Ireland. It details the current state of Irish vertebrates and provides a concise summary of the various legislation for each species.

RIPARIAN - Of or relating to a river bank

SACs - Special Areas of Conservation have been selected from the prime examples of wildlife conservation areas in Ireland. Their legal basis from which selection is derived is The Habitats Directive (92/43/EEC of the 21st May 1992). SAC's have also been known as cSAC's which stands for "candidate Special Areas of Conservation", and pcSAC's which stands for "proposed candidate Special Areas of Conservation."

SCIENTIFIC MONITORING - this is carried out by the monitoring section of the NPWS, whose function here is to ensure that the favourable conservation status of the site is maintained and where possible improved.

SEDIMENT - Solid particles that can originate by the weathering and erosion of pre-existing rock, by chemical precipitation from water, or by the breakdown of organisms.

SEDIMENTARY - Formed by the deposition of sediment, i.e. rock particles or chemical precipitate, or pertaining to the process of sedimentation.

SILICEOUS - Of or relating to rocks or sediments that contain silica and are acid

 $\mathsf{SILT}$  - Fine sediment particles that are between 0.004-0.063  $\,$  mm in diameter - component of mud  $\,$ 

SINKHOLE - Steep-sided, enclosed depression linking to underground drainage systems in a limestone region

SLACK - Wet depression in a sand dune system or, in the case of rivers, a backwater

SPAs - Special Protection Areas for Birds are areas which have been designated to ensure the conservation of certain categories of birds. Ireland is required to conserve the habitats of two categories of wild birds under the European Birds Directive (Council Directive 79/ 409/ 2nd April 1979). The NPWS is responsible for ensuring that such areas are protected from significant damage.

SPECIES - the lowest unit of classification normally used for plants and animals.

STRATEGY - A course of action or a broad approach towards achieving an objective. It is the general thrust of management towards achieving an objective. It is a description of how the objective is to be achieved.

SUBMERSED - Submerged or covered by water

SURVEY - a) Study/visit to produce an inventory of what is present / record a situation.- b) Establishing a baseline (study).

SUSTAINABLE - The highest rate at which a renewable resource can be used without reducing its supply (without causing damage to the resource).

TILL - Unsorted sediments laid down directly by glacier ice without the intervention of water

TRANSITION MIRE – Acidophilous vegetation intermediate between poor fen and ombrotrophic (rain-fed) bog.

TROPHIC - Of or relating to nutrient levels or nutrition

TUFA - Deposit or precipitate of calcium carbonate around calcareous springs

TURBARY - Refers to the right to harvest turf.

VASCULAR PLANTS - Higher plants with specialised conducting tissue, including angiosperms (flowering plants), ferns and club mosses

VERTEBRATES - Animals with backbones.

VERY RARE - an ecological term which is applied to distribution of species when assessed on a national grid reference system. The assessment is made on the basis of the number of occupied 10 km National Grid squares. Very Rare applies to 1-2, 10 km squares in this context.

WEATHERING - The process by which rocks are broken down and decomposed by the action of wind, rain temperature changes, plants and bacteria. See also chemical and mechanical weathering.

ZONING - The division of a nature conservation site (& neighbouring lands) into a number of subunits. Within each zone the management prescriptions will be reasonably uniform and will differ in type or intensity from the other zones in the plan.

## 10. Monaghan Fen Survey 2007 CD ROM

### Contents

Volume 1:

Monaghan Fen Survey 2007 Final Report by P. Foss & P. Crushell (In PDF format, requires Adobe Acrobat to view) Size: 28 mb

2. NPWS Monaghan Fen Survey Database Version 1.0 (Requires Filemaker Pro 8.0v2) Subset of sites located in County Monaghan exported from the NPWS Fen Survey Database Version 1.4 used to calculate report results and produce site lists and site reports. Size: 6 mb

3. Selected Excel tables to accompany the Monaghan Fen Survey Report including appendices; Size: 1 mb

- 3. List of Fens in County Monaghan Surveyed in detail on the MFS
- 4. List of Sites in County Monaghan Surveyed in Brief on the MFS to assess their potential fen interest
- 5. List of Sites Worthy of Survey supplied by Alan Hill, BSBI County Recorder for Monaghan to the MFS
- 6. Phytosociological Relevé Classification and Twinspan Vegetation Data Analysis from the MFS
- 7. Fen Survey Relevé Card and Site Record Form
- 8. Hydrochemistry Data from Water samples taken on sites during the MFS
- 9. Conservation Evaluation of Sites Surveyed on the MFS
- 10. List of sites where dumping and infill were noted as part of the MFS
- 11. Cross Border Sites where Conservation Designations require harmonisation
- 14. Habitat areas mapped on sites surveyed during the MFS
- 4. GIS Shape files from the Monaghan Fen Survey 2007 (Requires ArcView 8.1 GIS Software, total of 1.2 mb size for all files)

Volume 2:

Monaghan Fen Survey 2007 Individual Site Reports, containing: Site Survey Report; Six Inch Site map, Boundary data and location of Field Survey Notes; Site Air Photograph; Site Habitat Map. (In PDF format, requires Adobe Acrobat to view) Size: 135 mb

Volume 2:

Monaghan Fen Survey 2007 Site Photographic Record and Notes (In PDF format, requires Adobe Acrobat to view) Size: 341 mb